Showing 20 articles starting at article 521
< Previous 20 articles Next 20 articles >
Categories: Paleontology: Climate, Physics: General
Published Simulations of 'backwards time travel' can improve scientific experiments



Physicists have shown that simulating models of hypothetical time travel can solve experimental problems that appear impossible to solve using standard physics.
Published Large swings in past ocean oxygen revealed



As the climate warms, there is major concern that Earth's ocean will lose oxygen. A study has revealed that locked in ancient deep-sea sediments is evidence for oxygen loss in the world's ocean during past glacial periods, indicating that widespread oxygen loss with current climate change may not be permanent.
Published The fuel economy of a microswimmer



The amount of power a microswimmer needs to move can now be determined more easily. Scientists developed a general theorem to calculate the minimal energy required for propulsion. These insights allow a profound understanding for practical applications, such as targeted transport of molecules and substrates.
Published Surprising discovery shows electron beam radiation can repair nanostructures



In a surprising new study, researchers have found that the electron beam radiation that they previously thought degraded crystals can actually repair cracks in these nanostructures. The groundbreaking discovery provides a new pathway to create more perfect crystal nanostructures, a process that is critical to improving the efficiency and cost-effectiveness of materials that are used in virtually all electronic devices we use every day.
Published Widely tuneable terahertz lasers boost photo-induced superconductivity in K3C60



Researchers have long been exploring the effect of using tailored laser drives to manipulate the properties of quantum materials away from equilibrium. One of the most striking demonstrations of these physics has been in unconventional superconductors, where signatures of enhanced electronic coherences and super-transport have been documented in the resulting non-equilibrium states. However, these phenomena have not yet been systematically studied or optimized, primarily due to the complexity of the experiments. Technological applications are therefore still far removed from reality. In a recent experiment, this same group of researchers discovered a far more efficient way to create a previously observed metastable, superconducting-like state in K3C60 using laser light.
Published Scientists discover 'flipping' layers in heterostructures to cause changes in their properties



Transition metal dichalcogenide (TMD) semiconductors are special materials that have long fascinated researchers with their unique properties. For one, they are flat, one-atom-thick two-dimensional (2D) materials similar to that of graphene. They are compounds that contain different combinations of the transition metal group (e.g., molybdenum, tungsten) and chalcogen elements (e.g., sulfur, selenium, tellurium).
Published Bringing out the color in zinc



Researchers have synthesized a zinc complex based on two zinc centers that absorbs visible light. They demonstrated that this capability depends on the proximity of the zinc ions, where the complex responds to visible light when the zinc atoms are closer. This new property is expected to expand the utility of zinc, which already offers advantages including biological relevance, cost effectiveness, and low toxicity.
Published Paleoclimatologists use ancient sediment to explore future climate in Africa



With global warming apparently here to stay, a team of paleoclimatologists are studying an ancient source to determine future rainfall and drought patterns: fossilized plants that lived on Earth millions of years ago.
Published X-rays reveal microstructural fingerprints of 3D-printed alloy



Researchers took a novel approach to explore the way microstructure emerges in a 3D-printed metal alloy: They bombarded it with X-rays while the material was being printed.
Published Unifying matter, energy and consciousness



Understanding the interplay between consciousness, energy and matter could bring important insights to our fundamental understanding of reality.
Published Ionic crystal generates molecular ions upon positron irradiation, finds new study



The interaction between solid matter and positron (the antiparticle of electron) has provided important insights across a variety of disciplines, including atomic physics, materials science, elementary particle physics, and medicine. However, the experimental generation of positronic compounds by bombardment of positrons onto surfaces has proved challenging. In a new study, researchers detect molecular ion desorption from the surface of an ionic crystal when bombarded with positrons and propose a model based on positronic compound generation to explain their results.
Published The Gulf Stream is warming and shifting closer to shore



The Gulf Stream is intrinsic to the global climate system, bringing warm waters from the Caribbean up the East Coast of the United States. As it flows along the coast and then across the Atlantic Ocean, this powerful ocean current influences weather patterns and storms, and it carries heat from the tropics to higher latitudes as part of the Atlantic Meridional Overturning Circulation. A new study now documents that over the past 20 years, the Gulf Stream has warmed faster than the global ocean as a whole and has shifted towards the coast. The study relies on over 25,000 temperature and salinity profiles collected between 2001 and 2023.
Published Ancient Maya reservoirs offer lessons for today's water crises



Ancient Maya reservoirs, which used aquatic plants to filter and clean the water, 'can serve as archetypes for natural, sustainable water systems to address future water needs.' The Maya built and maintained reservoirs that were in use for more than 1,000 years. These reservoirs provided potable water for thousands to tens of thousands of people in cities during the annual, five-month dry season and in periods of prolonged drought.
Published Deciphering the intensity of past ocean currents



Ocean currents determine the structure of the deep-sea ocean floor and the transport of sediments, organic carbon, nutrients and pollutants. In flume-tank experiments, researchers have simulated how currents shape the seafloor and control sediment deposition. This will help in reconstructions of past marine conditions.
Published Twisted science: New quantum ruler to explore exotic matter



Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.
Published New 'Assembly Theory' unifies physics and biology to explain evolution and complexity



An international team of researchers has developed a new theoretical framework that bridges physics and biology to provide a unified approach for understanding how complexity and evolution emerge in nature. This new work on 'Assembly Theory' represents a major advance in our fundamental comprehension of biological evolution and how it is governed by the physical laws of the universe.
Published Machine learning used to probe the building blocks of shapes



Applying machine learning to find the properties of atomic pieces of geometry shows how AI has the power to accelerate discoveries in maths.
Published Lasers deflected using air



Using a novel method, beams of laser light can be deflected using air alone. An invisible grating made only of air is not only immune to damage from the laser light, but it also preserves the original quality of the beam.
Published Scientists investigate Grand Canyon's ancient past to predict future climate impacts



A team explores relationship between warming post-Ice Age temperatures and intensifying summer monsoon rains on groundwater reserves.
Published Climate and human land use both play roles in Pacific island wildfires past and present



It’s long been understood that human settlement contributes to conditions that make Pacific Islands more susceptible to wildfires, such as the devastating Aug. 8 event that destroyed the Maui community of Lahaina. But a new study from fire scientist shows that climate is an undervalued part of the equation.