Showing 20 articles starting at article 601
< Previous 20 articles Next 20 articles >
Categories: Paleontology: Climate, Physics: General
Published Demon hunting: Physicists confirm 67-year-old prediction of massless, neutral composite particle


In 1956, theoretical physicist David Pines predicted that electrons in a solid can do something strange. While they normally have a mass and an electric charge, Pines asserted that they can combine to form a composite particle that is massless, neutral, and does not interact with light. He called this particle a 'demon.' Now, researchers have finally found Pines' demon 67 years after it was predicted.
Published Scientists zero in on timing, causes of ice age mammal extinctions in southern California



Radiocarbon dating on bones in the La Brea Tar Pits lead archaeologists to warn that history may be repeating itself.
Published Quantum physicists simulate super diffusion on a quantum computer


Quantum physicists have successfully simulated super diffusion in a system of interacting quantum particles on a quantum computer. This is the first step in doing highly challenging quantum transport calculations on quantum hardware and, as the hardware improves over time, such work promises to shed new light in condensed matter physics and materials science.
Published Stabilizing precipitate growth at grain boundaries in alloys


Materials are often considered to be one phase, but many engineering materials contain two or more phases, improving their properties and performance. These two-phase materials have inclusions, called precipitates, embedded in the microstructure. Alloys, a combination of two or more types of metals, are used in many applications, like turbines for jet engines and light-weight alloys for automotive applications, because they have very good mechanical properties due to those embedded precipitates. The average precipitate size, however, tends to increase over time-in a process called coarsening-which results in a degradation of performance for microstructures with nanoscale precipitates.
Published Unlocking chaos: Ultracold quantum gas reveals insights into wave turbulence


In the intricate realm of wave turbulence, where predictability falters and chaos reigns, a groundbreaking study has emerged. The new research explores the heart of wave turbulence using an ultracold quantum gas, revealing new insights that could advance our understanding of non-equilibrium physics and have significant implications for various fields.
Published Magnonic computing: Faster spin waves could make novel computing systems possible


Research is underway around the world to find alternatives to our current electronic computing technology, as great, electron-based systems have limitations. A new way of transmitting information is emerging from the field of magnonics: instead of electron exchange, the waves generated in magnetic media could be used for transmission, but magnonics-based computing has been (too) slow to date. Scientists have now discovered a significant new method: When the intensity is increased, the spin waves become shorter and faster -- another step towards magnon computing.
Published Switching 'spin' on and off (and up and down) in quantum materials at room temperature


Researchers have found a way to control the interaction of light and quantum 'spin' in organic semiconductors, that works even at room temperature.
Published Carbon-based quantum technology


Graphene nanoribbons have outstanding properties that can be precisely controlled. Researchers have succeeded in attaching electrodes to individual atomically precise nanoribbons, paving the way for precise characterization of the fascinating ribbons and their possible use in quantum technology.
Published Key role of ice age cycles in early human interbreeding



Recent paleogenomic research revealed that interbreeding was common among early human species. However, little was known about when, where, and how often this hominin interbreeding took place. Using paleoanthropological evidence, genetic data, and supercomputer simulations of past climate, a team of international researchers has found that interglacial climates and corresponding shifts in vegetation created common habitats for Neanderthals and Denisovans, increasing their chances for interbreeding and gene flow in parts of Europe and central Asia.
Published Researchers develop a unique quantum mechanical approach to determining metal ductility


A team of scientists developed a new quantum-mechanics-based approach to predict metal ductility. The team demonstrated its effectiveness on refractory multi-principal-element alloys.
Published Elephant ancestors´ teeth evolved in response to long term changes in diet and climate in Africa



A new study shows that the cheek teeth of proboscideans (elephants and their ancient relatives) evolved in response to dietary changes due to vegetation changes and climate change in East Africa during the last 26 million years.
Published Scientists discover novel way of reading data in antiferromagnets, unlocking their use as computer memory



Scientists have made a significant advance in developing alternative materials for the high-speed memory chips that let computers access information quickly and that bypass the limitations of existing materials. They have discovered a way that allows them to make sense of previously hard-to-read data stored in these alternative materials, known as antiferromagnets.
Published Arrays of quantum rods could enhance TVs or virtual reality devices


Using scaffolds of folded DNA, engineers assembled arrays of quantum rods with desirable photonic properties that could enable them to be used as highly efficient micro-LEDs for televisions or virtual reality devices.
Published Zentropy and the art of creating new ferroelectric materials


Systems in the Universe trend toward disorder, with only applied energy keeping the chaos at bay. The concept is called entropy, and examples can be found everywhere: ice melting, campfire burning, water boiling. Zentropy theory, however, adds another level to the mix.
Published A climate-orchestrated early human love story



A new study finds that past changes in atmospheric CO2 and corresponding shifts in climate and vegetation played a key role in determining when and where early human species interbred.
Published How a massive North Atlantic cooling event disrupted early human occupation in Europe



A new study finds that around 1.12 million years ago a massive cooling event in the North Atlantic and corresponding shifts in climate, vegetation and food resources disrupted early human occupation of Europe.
Published Muon g-2 doubles down with latest measurement, explores uncharted territory in search of new physics


Scientists working on Fermilab's Muon g-2 experiment released the world's most precise measurement yet of the magnetic moment of the muon, bringing particle physics closer to the ultimate showdown between theory and experiment that may uncover new particles or forces.
Published Making molecules dance to our tune reveals what drives their first movements


Bringing ultrafast physics to structural biology has revealed the dance of molecular 'coherence' in unprecedented clarity.
Published Potential application of unwanted electronic noise in semiconductors


Random telegraph noise (RTN) in semiconductors is typically caused by two-state defects. Two-dimensional (2D) van der Waals (vdW) layered magnetic materials are expected to exhibit large fluctuations due to long-range Coulomb interaction; importantly, which could be controlled by a voltage compared to 3D counterparts having large charge screening. Researchers reported electrically tunable magnetic fluctuations and RTN signal in multilayered vanadium-doped tungsten diselenide (WSe2) by using vertical magnetic tunneling junction devices. They identified bistable magnetic states in the 1/f2 RTNs in noise spectroscopy, which can be further utilized for switching devices via voltage polarity.
Published Drops of seawater contain traces of an ancient world



New research links chemical changes in seawater to volcanic activity and changes.