Showing 20 articles starting at article 1141
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Plants and Animals, Physics: General
Published AI system can generate novel proteins that meet structural design targets



A new machine-learning system can generate protein designs with certain structural features, and which do not exist in nature. These proteins could be utilized to make materials that have similar mechanical properties to existing materials, like polymers, but which would have a much smaller carbon footprint.
Published Chitin from consuming insects can help both gut microbiota and global health



Increased insect consumption by humans may be better for both gut health and planetary health. Chitin (kai'tin) and healthy fats from insects appear to contribute to healthy gut microbiota and are strong sources of protein and nutrients, according to a recent paper.
Published Quantum entanglement could make accelerometers and dark matter sensors more accurate



The 'spooky action at a distance' that once unnerved Einstein may be on its way to being as pedestrian as the gyroscopes that currently measure acceleration in smartphones.
Published Two qudits fully entangled



Recently quantum computers started to work with more than just the zeros and ones we know from classical computers. Now a team demonstrates a way to efficiently create entanglement of such high-dimensional systems to enable more powerful calculations.
Published Quantum computer applied to chemistry



There are high expectations that quantum computers may deliver revolutionary new possibilities for simulating chemical processes. This could have a major impact on everything from the development of new pharmaceuticals to new materials. Researchers have now used a quantum computer to undertake calculations within a real-life case in chemistry.
Published Embracing variations: Physicists analyze noise in Lambda-type quantum memory



In the future, communications networks and computers will use information stored in objects governed by the microscopic laws of quantum mechanics. This capability can potentially underpin communication with greatly enhanced security and computers with unprecedented power. A vital component of these technologies will be memory devices capable of storing quantum information to be retrieved at will.
Published X-ray analysis sheds new light on prehistoric predator's last meal



We now know more about the diet of a prehistoric creature that grew up to two and a half meters long and lived in Australian waters during the time of the dinosaurs, thanks to the power of x-rays. Researchers used micro-CT scans to peer inside the fossilized stomach remains of a small marine reptile -- a plesiosaur nicknamed 'Eric' after a song from the comedy group Monty Python -- to determine what the creature ate in the lead up to its death.
Published Rock, paper, scissors: Searching for stronger nonlocality using quantum computers



In the quantum world particles can instantaneously know about each other's state, even when separated by large distances. This is known as nonlocality. Now, A research group has produced some interesting findings on the Hardy nonlocality that have important ramifications for understanding quantum mechanics and its potential applications in communications.
Published Long-distance quantum teleportation enabled by multiplexed quantum memories



Researchers report having achieved quantum teleportation from a photon to a solid-state qubit over a distance of 1km, with a novel approach using multiplexed quantum memories.
Published A team creates 'quantum composites' for various electrical and optical innovations



A team has shown in the laboratory the unique and practical function of newly created materials, which they called quantum composites, that may advance electrical, optical, and computer technologies.
Published Physicists find unusual waves in nickel-based magnet



Perturbing electron spins in a magnet usually results in excitations called 'spin waves' that ripple through the magnet like waves moving across the surface of a pond that's been struck by a pebble. Physicists have now discovered dramatically different excitations called 'spin excitons' that can also 'ripple' through a nickel-based magnet as a coherent wave.
Published Tiny biobattery with 100-year shelf life runs on bacteria



A tiny biobattery that could still work after 100 years has been developed.
Published Chemists propose ultrathin material for doubling solar cell efficiency



Researchers are studying radical new ways to improve solar power and provide more options for the industry to explore. Chemists are proposing to make solar cells using not silicon, but an abundantly available natural material called molybdenum disulfide. Using a creative combination of photoelectrochemical and spectroscopic techniques, the researchers conducted a series of experiments showing that extremely thin films of molybdenum disulfide display unprecedented charge carrier properties that could someday drastically improve solar technologies.
Published Quantum liquid becomes solid when heated



Solids can be melted by heating, but in the quantum world it can also be the other way around: An experimental team has shown how a quantum liquid forms supersolid structures by heating. The scientists obtained a first phase diagram for a supersolid at finite temperature.
Published Teasing strange matter from the ordinary



In a unique analysis of experimental data, nuclear physicists have made observations of how lambda particles, so-called 'strange matter,' are produced by a specific process called semi-inclusive deep inelastic scattering (SIDIS). What's more, these data hint that the building blocks of protons, quarks and gluons, are capable of marching through the atomic nucleus in pairs called diquarks, at least part of the time.
Published Physicists discover transformable nano-scale electronic devices



The nano-scale electronic parts in devices like smartphones are solid, static objects that once designed and built cannot transform into anything else. But physicists have reported the discovery of nano-scale devices that can transform into many different shapes and sizes even though they exist in solid states.
Published Fossils reveal the long-term relationship between feathered dinosaurs and feather-feeding beetles



New fossils in amber have revealed that beetles fed on the feathers of dinosaurs about 105 million years ago, showing a symbiotic relationship of one-sided or mutual benefit.
Published Coastal species persist on high seas on floating plastic debris



The high seas have been colonized by a surprising number of coastal marine invertebrate species, which can now survive and reproduce in the open ocean, contributing strongly to the floating community composition. Researchers found coastal species, representing diverse taxonomic groups and life history traits, in the eastern North Pacific Subtropical Gyre on over 70 percent of the plastic debris they examined. Further, the debris carried more coastal species than open ocean species.
Published New details of Tully monster revealed



For more than half a century, the Tully monster (Tullimonstrum gregarium), an enigmatic animal that lived about 300 million years ago, has confounded paleontologists, with its strange anatomy making it difficult to classify. Recently, a group of researchers proposed a hypothesis that Tullimonstrum was a vertebrate similar to cyclostomes (jawless fish like lamprey and hagfish). If it was, then the Tully monster would potentially fill a gap in the evolutionary history of early vertebrates. Studies so far have both supported and rejected this hypothesis. Now, using 3D imaging technology, a team in Japan believes it has found the answer after uncovering detailed characteristics of the Tully monster which strongly suggest that it was not a vertebrate. However, its exact classification and what type of invertebrate it was is still to be decided.
Published Processing data at the speed of light



Scientists have developed an extremely small and fast nano-excitonic transistor.