Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Physics: Acoustics and Ultrasound
Published 3D-printed microstructure forest facilitates solar steam generator desalination



Faced with the world's impending freshwater scarcity, researchers turned to solar steam generators, which are emerging as a promising device for seawater desalination. The team sought design inspiration from trees and harnessed the potential of 3D printing. They present technology for producing efficient SSGs for desalination and introduces a novel method for printing functional nanocomposites for multi-jet fusion. Their SSGs were inspired by plant transpiration and are composed of miniature tree-shaped microstructures, forming an efficient, heat-distributing forest.
Published Aluminum scandium nitride films: Enabling next-gen ferroelectric memory devices



Aluminum scandium nitride thin films could pave the way for the next generation of ferroelectric memory devices, according to a new study. Compared to existing ferroelectric materials, these films maintain their ferroelectric properties and crystal structure even after heat treatment at temperatures up to 600 C in both hydrogen and argon atmospheres. This high stability makes them ideal for high-temperature manufacturing processes under the H2-included atmosphere used in fabricating advanced memory devices.
Published 3D printing of light-activated hydrogel actuators



An international team of researchers has embedded gold nanorods in hydrogels that can be processed through 3D printing to create structures that contract when exposed to light -- and expand again when the light is removed. Because this expansion and contraction can be performed repeatedly, the 3D-printed structures can serve as remotely controlled actuators.
Published New technique pinpoints nanoscale 'hot spots' in electronics to improve their longevity



Researchers engineered a new technique to identify at the nanoscale level what components are overheating in electronics and causing their performance to fail.
Published Capturing carbon with energy-efficient sodium carbonate-nanocarbon hybrid material



Carbon capture is a promising approach for mitigating carbon dioxide (CO2) emissions. Different materials have been used to capture CO2 from industrial exhaust gases. Scientists developed hybrid CO2 capture materials containing sodium carbonate and nanocarbon prepared at different temperatures, tested their performance, and identified the optimal calcination temperature condition. They found that the hybrid material exhibits and maintains high CO2 capture capacity for multiple regeneration cycles at a lower temperature, making it cost- and energy-effective.
Published Ultrasound technology can be used to boost mindfulness, study finds



In a new study, researchers used low-intensity ultrasound technology to noninvasively alter a brain region associated with activities such as daydreaming, recalling memories and envisioning the future.
Published Hydrogen flight looks ready for take-off with new advances



The possibility of hydrogen-powered flight means greater opportunities for fossil-free travel, and the technological advances to make this happen are moving fast. New studies show that almost all air travel within a 750-mile radius (1200 km) could be made with hydrogen-powered aircraft by 2045, and with a novel heat exchanger currently in development, this range could be even further.
Published Researchers show promising material for solar energy gets its curious boost from entropy



Researchers discovered a microscopic mechanism that solves in part the outstanding performance achieved by a new class of organic semiconductors known as non-fullerene acceptors (NFAs).
Published A 2D device for quantum cooling



Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.
Published Cool roofs are best at beating cities' heat



Painting roofs white or covering them with a reflective coating would be more effective at cooling cities like London than vegetation-covered 'green roofs,' street-level vegetation or solar panels, finds a new study led by UCL researchers.
Published Scientists probe chilling behavior of promising solid-state cooling material



A research team has bridged a knowledge gap in atomic-scale heat motion. This new understanding holds promise for enhancing materials to advance an emerging technology called solid-state cooling.
Published Common plastics could passively cool and heat buildings with the seasons



By restricting radiant heat flows between buildings and their environment to specific wavelengths, coatings engineered from common materials can achieve energy savings and thermal comfort that goes beyond what traditional building envelopes can achieve.
Published Characterization of the extraordinary thermoelectric properties of cadmium arsenide thin films



If there's one thing we humans are good at, it's producing heat. Significant amounts, and in many cases most of the energy we generate and put into our systems we lose as heat, whether it be our appliances, our transportation, our factories, even our electrical grid.
Published Small, adsorbent 'fins' collect humidity rather than swim through water



Clean, safe water is a limited resource and access to it depends on local bodies of water. But even dry regions have some water vapor in the air. To harvest small amounts of humidity, researchers developed a compact device with absorbent-coated fins that first trap moisture and then generate potable water when heated. They say the prototype could help meet growing demands for water, especially in arid locations.
Published The 'Queen of the Night' does not whistle



Opera singers have to use the extreme limits of their voice range. Many pedagogical and scientific sources suggest that the highest pitches reached in classical singing can only be produced with a so-called 'whistle' voice register, in analogy to ultrasonic vocalizations of mice and rats. An international research team has now rejected this assumption. In their study, the scientists showed that the high-frequency sounds of operatic sopranos are produced with the same principle than speech and most other forms of singing.
Published Breakthrough approach enables bidirectional BCI functionality



Brain-computer interfaces or BCIs hold immense potential for individuals with a wide range of neurological conditions, but the road to implementation is long and nuanced for both the invasive and noninvasive versions of the technology. Scientists have now successfully integrated a novel focused ultrasound stimulation to realize bidirectional BCI that both encodes and decodes brain waves using machine learning in a study with 25 human subjects. This work opens up a new avenue to significantly enhance not only the signal quality, but also, overall nonivasive BCI performance by stimulating targeted neural circuits.
Published New fabric makes urban heat islands more bearable



Researchers detail a new wearable fabric that can help urban residents survive the worst impacts of massive heat caused by global climate change, with applications in clothing, building and car design, and food storage. By addressing both direct solar heating and the thermal radiation emitting from pavement and buildings in urban heat islands, the material kept 2.3 degrees Celsius (4.1 degrees Fahrenheit) cooler than the broadband emitter fabric used for outdoor endurance sports and 8.9 degrees Celsius (16 degrees Fahrenheit) cooler than the commercialized silk commonly used for shirts, dresses and other summer clothing.
Published 3D-printed mini-actuators can move small soft robots, lock them into new shapes



Researchers have demonstrated miniature soft hydraulic actuators that can be used to control the deformation and motion of soft robots that are less than a millimeter thick. The researchers have also demonstrated that this technique works with shape memory materials, allowing users to repeatedly lock the soft robots into a desired shape and return to the original shape as needed.
Published New plasma escape mechanism could protect fusion vessels from excessive heat



The exhaust heat generated by a fusing plasma in a commercial-scale reactor may not be as damaging to the vessel's innards as once thought, according to new research about escaping plasma particles.
Published Researchers engineer new approach for controlling thermal emission



If a material absorbs light, it will heat up. That heat must go somewhere, and the ability to control where and how much heat is emitted can protect or even hide such devices as satellites. An international team of researchers has published a novel method for controlling this thermal emission in Science.