Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Energy: Fossil Fuels, Physics: Acoustics and Ultrasound
Published Demystifying vortex rings in nuclear fusion, supernovae



Better understanding the formation of swirling, ring-shaped disturbances -- known as vortex rings -- could help nuclear fusion researchers compress fuel more efficiently, bringing it closer to becoming a viable energy source. A mathematical model linking these vortices with more pedestrian types, like smoke rings, could help engineers control their behavior in power generation and more.
Published Driving on sunshine: Clean, usable liquid fuels made from solar power



Researchers have developed a solar-powered technology that converts carbon dioxide and water into liquid fuels that can be added directly to a car's engine as drop-in fuel.
Published Watch these cells rapidly create protrusions for exploration and movement



In order to move, cells must be able to rapidly change shape. A team of researchers show that cells achieve this by storing extra 'skin' in folds and bumps on their surface. This cell surface excess can be rapidly deployed to cover temporary protrusions and then folded away for next time.
Published 'Improved' cookstoves emit more ultrafine particles than conventional stoves



Improved cookstoves, which are widely used for cooking in developing countries, produce twice as many harmful ultrafine air pollution particles (PM0.1) as conventional stoves, according to a new study.
Published Unlocking the power of photosynthesis for clean energy production



Researchers are embarking on a groundbreaking project to mimic the natural process of photosynthesis using bacteria to deliver electrons to a nanocrystal semiconductor photocatalyst. By leveraging the unique properties of microorganisms and nanomaterials, the system has the potential to replace current approaches that derive hydrogen from fossil fuels, revolutionizing the way hydrogen fuel is produced and unlocking a powerful source of renewable energy.
Published A cocktail party of 3D-printed robot heads



Imagine a cocktail party full of 3D-printed, humanoid robots listening and talking to each other. That seemingly sci-fi scene is the goal of an augmented listening laboratory. With precise control over the simulated subjects, the researchers can adjust the parameters of the experiment and even set the machines in motion to simulate neck movements.
Published Wearable ultrasound patch provide non-invasive deep tissue monitoring



Engineers have developed a stretchable ultrasonic array capable of serial, non-invasive, three-dimensional imaging of tissues as deep as four centimeters below the surface of human skin, at a spatial resolution of 0.5 millimeters. This new method provides a non-invasive, longer-term alternative to current methods, with improved penetration depth.
Published Sensor enables high-fidelity input from everyday objects, human body



Couches, tables, sleeves and more can turn into a high-fidelity input device for computers using a new sensing system.
Published CO2 recycling: What is the role of the electrolyte?



The greenhouse gas carbon dioxide can be converted into useful hydrocarbons by electrolysis. The design of the electrolysis cell is crucial in this process. The so-called zero-gap cell is particularly suitable for industrial processes. But there are still problems: The cathodes clog up quickly.
Published Lead vocal tracks in popular music go quiet



Scientists carried out an analysis of hundreds of popular song recordings from 1946 to 2020 to determine the lead vocal to accompaniment ratio, or LAR. The study considered the four highest-ranked songs from the Billboard Hot 100 chart for each year and the results show that, contrary to expectations, the LAR for popular music decreased over the decades in question. This means that, relative to their bands, lead singers are getting quieter.
Published It's not as difficult as you think to shout upwind



Why does it feel so difficult to shout upwind? The sensation is common enough to have found its way into an idiom about not being understood. Researchers wanted a scientific explanation for the phenomenon -- and there wasn't been one. They have now shown that our common sense understanding of this situation is wrong. It isn't harder to shout into the wind; it's just harder to hear yourself.
Published Versatile, high-speed, and efficient crystal actuation with photothermally resonated natural vibrations



Mechanically responsive molecular crystals are extremely useful in soft robotics, which requires a versatile actuation technology. Crystals driven by the photothermal effect are particularly promising for achieving high-speed actuation. However, the response (bending) observed in these crystals is usually small. Now, scientists address this issue by inducing large resonated natural vibrations in anisole crystals with UV light illumination at the natural vibration frequency of the crystal.
Published Researchers help AI express uncertainty to improve health monitoring tech



A team of engineering and health researchers has developed a tool that improves the ability of electronic devices to detect when a human patient is coughing, which has applications in health monitoring. The new tool relies on an advanced artificial intelligence (AI) algorithm that helps the AI better identify uncertainty when faced with unexpected data in real-world situations.
Published Shutting down nuclear power could increase air pollution



A new study shows that if U.S. nuclear power plants are retired, the burning of coal, oil, and natural gas to fill the energy gap could cause more than 5,000 premature deaths.
Published AI-equipped eyeglasses read silent speech



Researchers have developed a silent-speech recognition interface that uses acoustic-sensing and artificial intelligence to continuously recognize up to 31 unvocalized commands, based on lip and mouth movements.
Published Moving towards 3 degrees of warming -- the phasing out of coal is too slow



The use of coal power is not decreasing fast enough. The Paris Agreement's target of a maximum of 2 degrees of warming appear to be missed, and the world is moving towards a temperature increase of 2.5 -- 3 degrees. At the same time it is feasible to avoid higher warming.
Published Sailing cargo ships can benefit from new aerodynamic tech



A research team has demonstrated a unique method that reduces the aerodynamic resistance of ships by 7.5 per cent. This opens the way for large cargo ships borne across the oceans by wind alone, as wind-powered ships are more affected by aerodynamic drag than fossil-fueled ones.
Published Detecting, predicting, and preventing aortic ruptures with computational modeling



According to some estimates, up to 80% of patients who experience a ruptured abdominal aortic aneurysm will die before they reach the hospital or during surgery. But early intervention can prevent rupture and improve outcomes. Researchers have now made a computational model of the cardiovascular system in order to predict early AAA rupture and monitor patients' blood vessel conditions. They mimicked specific health conditions and investigated various hemodynamic parameters using image-based computational blood dynamics.
Published Smart films help to make loudspeakers lighter and more energy-efficient



Scientists are developing intelligent materials that are opening up new avenues in sound reproduction technology: lightweight loudspeakers that use far less energy than their conventional counterparts, novel shapes for sound and signal generators and applications involving noise cancelling textiles. The basis for these smart materials are ultrathin silicone films that can act as artificial muscles with their own built-in sensors.
Published Pulsing ultrasound waves could someday remove microplastics from waterways


Colorful particles of plastic drift along under the surface of most waterways. These barely visible microplastics -- less than 5 mm wide -- are potentially harmful to aquatic animals and plants, as well as humans. Now, a team reports a two-stage device made with steel tubes and pulsing sound waves that removes most of the plastic particles from real water samples.