Chemistry: Thermodynamics Environmental: General Geoscience: Environmental Issues Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Sunrise to sunset, new window coating blocks heat -- not view      (via sciencedaily.com)     Original source 

Windows welcome light into interior spaces, but they also bring in unwanted heat. A new window coating blocks heat-generating ultraviolet and infrared light and lets through visible light, regardless of the sun's angle. The coating can be incorporated onto existing windows or automobiles and can reduce air-conditioning cooling costs by more than one-third in hot climates.

Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

100 kilometers of quantum-encrypted transfer      (via sciencedaily.com)     Original source 

Researchers have taken a big step towards securing information against hacking. They have succeeded in using quantum encryption to securely transfer information 100 kilometers via fiber optic cable -- roughly equivalent to the distance between Oxford and London.

Chemistry: Biochemistry Energy: Technology Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers discover dual topological phases in an intrinsic monolayer crystal      (via sciencedaily.com)     Original source 

An international team working with single-atom thick crystals found TaIrTe4's transition between the two distinct topological states of insulation and conduction. The material exhibited zero electrical conductivity within its interior, while its boundaries remain conductive. The team's investigation determined that the two topological states stem from disparate origins. The novel properties can serve as a promising platform for exploring exotic quantum phases and electromagnetism.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Magnetic avalanche triggered by quantum effects      (via sciencedaily.com)     Original source 

Scientists have shown that Barkhausen noise can be produced not only through traditional, or classical means, but through quantum mechanical effects. The research represents an advance in fundamental physics and could one day have applications in creating quantum sensors and other electronic devices.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A new type of cooling for quantum simulators      (via sciencedaily.com)     Original source 

Quantum simulators are quantum systems that can be controlled exceptionally well. They can be used to indirectly learn something about other quantum systems, which cannot be experimented on so easily. Therefore, quantum simulators play an important role in unraveling the big questions of quantum physics. However, they are limited by temperature: They only work well, when they are extremely cold. Scientists have now developed a method to cool quantum simulators even more than before: by splitting a Bose-Einstein-condensate in half, in a very special way.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Bullseye! Accurately centering quantum dots within photonic chips      (via sciencedaily.com)     Original source 

Researchers have now developed standards and calibrations for optical microscopes that allow quantum dots to be aligned with the center of a photonic component to within an error of 10 to 20 nanometers (about one-thousandth the thickness of a sheet of paper). Such alignment is critical for chip-scale devices that employ the radiation emitted by quantum dots to store and transmit quantum information.

Geoscience: Earth Science Offbeat: Earth and Climate Offbeat: General Offbeat: Space Physics: General Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: Exploration Space: General Space: The Solar System
Published

Scientists on the hunt for evidence of quantum gravity's existence at the South Pole      (via sciencedaily.com)     Original source 

An Antarctic large-scale experiment is striving to find out if gravity also exists at the quantum level. An extraordinary particle able to travel undisturbed through space seems to hold the answer.

Chemistry: General Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists deliver quantum algorithm to develop new materials and chemistry      (via sciencedaily.com)     Original source 

Scientists published the Cascaded Variational Quantum Eigensolver (CVQE) algorithm in a recent article, expected to become a powerful tool to investigate the physical properties in electronic systems.

Chemistry: General Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

The world is one step closer to secure quantum communication on a global scale      (via sciencedaily.com)     Original source 

Researchers have brought together two Nobel prize-winning research concepts to advance the field of quantum communication. Scientists can now efficiently produce nearly perfect entangled photon pairs from quantum dot sources.

Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum interference could lead to smaller, faster, and more energy-efficient transistors      (via sciencedaily.com)     Original source 

Scientists made a single-molecule transistor using quantum interference to control electron flow. This new design offers high on/off ratio and stability, potentially leading to smaller, faster, and more energy-efficient devices. Quantum interference also improves the transistor's sensitivity to voltage changes, further boosting its efficiency.

Biology: Biochemistry Biology: General Biology: Marine Biology: Zoology Chemistry: Biochemistry Ecology: Sea Life Physics: Acoustics and Ultrasound
Published

Caller ID of the sea: Tagging whale communication and behavior      (via sciencedaily.com)     Original source 

Biologists use a novel method of simultaneous acoustic tagging to gain insights into the link between whale communication and behavior

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Cleaning up environmental contaminants with quantum dot technology      (via sciencedaily.com)     Original source 

The 2023 Nobel Prize in Chemistry was focused on quantum dots -- objects so tiny, they're controlled by the strange rules of quantum physics. Quantum dots used in electronics are often toxic, but their nontoxic counterparts are being explored for uses in medicine and in the environment, including water decontamination. One team of researchers has specially designed carbon- and sulfur-based dots for these environmental applications.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum talk with magnetic disks      (via sciencedaily.com)     Original source 

Quantum computers promise to tackle some of the most challenging problems facing humanity today. While much attention has been directed towards the computation of quantum information, the transduction of information within quantum networks is equally crucial in materializing the potential of this new technology. Addressing this need, a research team is now introducing a new approach for transducing quantum information: the team has manipulated quantum bits, so called qubits, by harnessing the magnetic field of magnons -- wave-like excitations in a magnetic material -- that occur within microscopic magnetic disks.

Chemistry: General Chemistry: Organic Chemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Spectroscopy and theory shed light on excitons in semiconductors      (via sciencedaily.com)     Original source 

Researchers have made very fast and very precise images of excitons -- in fact, accurate to one quadrillionth of a second and one billionth of a meter. This understanding is essential for developing more efficient materials with organic semiconductors.

Chemistry: Biochemistry Physics: Acoustics and Ultrasound
Published

New ultrasound technology may revolutionize respiratory disease diagnoses      (via sciencedaily.com)     Original source 

By evaluating sound vibrations produced by the airflow induced within the lungs and bronchial tree during normal breathing as well as those produced by the larynx during vocalizations, doctors can identify potential disease-related abnormalities within the respiratory system. Researchers demonstrate the efficacy of ultrasound technology to detect low-amplitude movements produced by vocalizations at the surface of the chest. They also demonstrated the possibility of using the airborne ultrasound surface motion camera to map these vibrations during short durations so as to illustrate their evolution.

Geoscience: Earthquakes Offbeat: Earth and Climate Offbeat: General Physics: Acoustics and Ultrasound
Published

What kinds of seismic signals did Swifties send at LA concert?      (via sciencedaily.com)     Original source 

Seattle may have experienced its own Swift Quake last July, but at an August 2023 concert Taylor Swift's fans in Los Angeles gave scientists a lot of shaking to ponder. After some debate, a research team concluded that it was likely the dancing and jumping motions of the audience at SoFi Stadium -- not the musical beats or reverberations of the sound system -- that generated the concert's distinct harmonic tremors.

Energy: Technology Physics: General Physics: Quantum Computing
Published

Scientists use novel technique to create new energy-efficient microelectronic device      (via sciencedaily.com)     Original source 

Researchers have created a new material that uses 'redox gating' to control the movement of electrons in and out of a semiconducting material.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Staying in the loop: How superconductors are helping computers 'remember'      (via sciencedaily.com)     Original source 

To advance neuromorphic computing, some researchers are looking at analog improvements -- advancing not just software, but hardware too. Research shows a promising new way to store and transmit information using disordered superconducting loops.

Computer Science: Encryption Computer Science: Quantum Computers Mathematics: General Mathematics: Puzzles Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: Exploration Space: General
Published

Satellites for quantum communications      (via sciencedaily.com)     Original source 

Through steady advances in the development of quantum computers and their ever-improving performance, it will be possible in the future to crack our current encryption processes. To address this challenge, researchers are developing encryption methods that will apply physical laws to prevent the interception of messages. To safeguard communications over long distances, the QUICK space mission will deploy satellites.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Powerful new tool ushers in new era of quantum materials research      (via sciencedaily.com)     Original source 

Research in quantum materials is paving the way for groundbreaking discoveries and is poised to drive technological advancements that will redefine the landscapes of industries like mining, energy, transportation, and medtech. A technique called time- and angle-resolved photoemission spectroscopy (TR-ARPES) has emerged as a powerful tool, allowing researchers to explore the equilibrium and dynamical properties of quantum materials via light-matter interaction.