Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Physics: Acoustics and Ultrasound, Physics: Quantum Computing
Published Quantum discovery: Materials can host D-wave effects with F-wave behaviors


In a potential boon for quantum computing, physicists have shown that topologically protected quantum states can be entangled with other, highly manipulable quantum states in some electronic materials.
Published Absence of universal topological signatures in high harmonic generation


Theoreticians report that they found no evidence of any universal topological signatures after performing the first ab initio investigation of high harmonic generation from topological insulators.
Published Nuclear spin's impact on biological processes uncovered


Researchers have discovered that nuclear spin influences biological processes, challenging long-held beliefs. They found that certain isotopes behave differently in chiral environments, affecting oxygen dynamics and transport. This breakthrough could advance biotechnology, quantum biology, and NMR technology, with potential applications in isotope separation and medical imaging.
Published Scientists create novel approach to control energy waves in 4D


Everyday life involves the three dimensions or 3D -- along an X, Y and Z axis, or up and down, left and right, and forward and back. But, in recent years scientists have explored a 'fourth dimension' (4D), or synthetic dimension, as an extension of our current physical reality.
Published When electrons slowly vanish during cooling


Many substances change their properties when they are cooled below a certain critical temperature. Such a phase transition occurs, for example, when water freezes. However, in certain metals there are phase transitions that do not exist in the macrocosm. They arise because of the special laws of quantum mechanics that apply in the realm of nature's smallest building blocks. It is thought that the concept of electrons as carriers of quantized electric charge no longer applies near these exotic phase transitions. Researchers have now found a way to prove this directly. Their findings allow new insights into the exotic world of quantum physics.
Published Novel Raman technique breaks through 50 years of frustration


Researchers have developed a new technique that vastly improves readings of protein-to-ligand interactions through Raman spectroscopy.
Published A wearable ultrasound scanner could detect breast cancer earlier


In hopes of improving the survival rate for breast cancer patients, researchers designed a wearable ultrasound device that could allow women to detect tumors when they are still in early stages.
Published How atomic nuclei vibrate


Using ultra-high-precision laser spectroscopy on a simple molecule, a group of physicists has measured the wave-like vibration of atomic nuclei with an unprecedented level of precision. The physicists report that they can thus confirm the wave-like movement of nuclear material more precisely that ever before and that they have found no evidence of any deviation from the established force between atomic nuclei.
Published Scientists caught Hofstadter's butterfly in one of the most ancient materials on Earth


Researchers have revisited one of the most ancient materials on Earth -- graphite, and discovered new physics that has eluded the field for decades.
Published A quick look inside a human being



Physicists have succeeded in making a new imaging technique ready for use on humans. Radioactive markers and radiation are not necessary for this.
Published A new type of quantum bit in semiconductor nanostructures


Researchers have created a quantum superposition state in a semiconductor nanostructure that might serve as a basis for quantum computing. The trick: two optical laser pulses that act as a single terahertz laser pulse.
Published 'Quantum avalanche' explains how nonconductors turn into conductors



The study takes a new approach to answer a long-standing mystery about insulator-to-metal transitions.
Published Detection of bacteria and viruses with fluorescent nanotubes


The new carbon nanotube sensor design resembles a molecular toolbox that can be used to quickly assemble sensors for a variety of purposes -- for instance for detecting bacteria and viruses.
Published Unveiling the quantum dance: Experiments reveal nexus of vibrational and electronic dynamics


Scientists have demonstrated experimentally a long-theorized relationship between electron and nuclear motion in molecules, which could lead to the design of materials for solar cells, electronic displays and other applications that can make use of this powerful quantum phenomenon.
Published Theory for superfluid helium confirmed


Researchers have achieved a groundbreaking milestone in studying how vortices move in these quantum fluids. A new study of vortex ring motion in superfluid helium provides crucial evidence supporting a recently developed theoretical model of quantized vortices.
Published Researchers establish criterion for nonlocal quantum behavior in networks


A new theoretical study provides a framework for understanding nonlocality, a feature that quantum networks must possess to perform operations inaccessible to standard communications technology. By clarifying the concept, researchers determined the conditions necessary to create systems with strong, quantum correlations.
Published New superconductors can be built atom by atom


The future of electronics will be based on novel kinds of materials. Sometimes, however, the naturally occurring topology of atoms makes it difficult for new physical effects to be created. To tackle this problem, researchers have now successfully designed superconductors one atom at a time, creating new states of matter.
Published Despite doubts from quantum physicists: Einstein's theory of relativity reaffirmed



One of the most basic assumptions of fundamental physics is that the different properties of mass -- weight, inertia and gravitation -- always remain the same in relation to each other. Although all measurements to date confirm the equivalence principle, quantum theory postulates that there should be a violation. This inconsistency between Einstein's gravitational theory and modern quantum theory is the reason why ever more precise tests of the equivalence principle are particularly important. A team has now succeeded in proving with 100 times greater accuracy that passive and active gravitational mass are always equivalent -- regardless of the particular composition of the respective masses.
Published Controlling signal routing in quantum information processing



Routing signals and isolating them against noise and back-reflections are essential in many practical situations in classical communication as well as in quantum processing. In a theory-experimental collaboration, a team has achieved unidirectional transport of signals in pairs of 'one-way streets'. This research opens up new possibilities for more flexible signaling devices.
Published Physicists work to prevent information loss in quantum computing



Nothing exists in a vacuum, but physicists often wish this weren't the case. If the systems that scientists study could be completely isolated from the outside world, things would be a lot easier. Take quantum computing. It's a field that's already drawing billions of dollars in support from tech investors and industry heavyweights including IBM, Google and Microsoft. But if the tiniest vibrations creep in from the outside world, they can cause a quantum system to lose information.