Physics: Acoustics and Ultrasound
Published

Acoustics researchers decompose sound accurately into its three basic components      (via sciencedaily.com)     Original source 

Any sound can now be perfectly replicated by a combination of whistles, clicks, and hisses, with implications for sound processing across the media landscape.

Physics: Quantum Computing
Published

Researchers make a surprising discovery about the magnetic interactions in a Kagome layered topological magnet      (via sciencedaily.com) 

A team conducted an in-depth investigation of the magnetism of TbMn6Sn6, a Kagome layered topological magnet. They were surprised to find that the magnetic spin reorientation in TbMn6Sn6 occurs by generating increasing numbers of magnetically isotropic ions as the temperature increases.

Mathematics: Modeling Physics: Quantum Computing
Published

Machine learning takes materials modeling into new era      (via sciencedaily.com) 

The arrangement of electrons in matter, known as the electronic structure, plays a crucial role in fundamental but also applied research such as drug design and energy storage. However, the lack of a simulation technique that offers both high fidelity and scalability across different time and length scales has long been a roadblock for the progress of these technologies. Researchers have now pioneered a machine learning-based simulation method that supersedes traditional electronic structure simulation techniques. Their Materials Learning Algorithms (MALA) software stack enables access to previously unattainable length scales.

Engineering: Nanotechnology Physics: Quantum Computing
Published

Researchers grow precise arrays of nanoLEDs      (via sciencedaily.com) 

A new platform enables researchers to 'grow' halide perovskite nanocrystals with precise control over the location and size of each individual crystal, integrating them into nanoscale light-emitting diodes.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

Finding the flux of quantum technology      (via sciencedaily.com)     Original source 

We interact with bits and bytes everyday -- whether that's through sending a text message or receiving an email. There's also quantum bits, or qubits, that have critical differences from common bits and bytes. These photons -- particles of light -- can carry quantum information and offer exceptional capabilities that can't be achieved any other way. Unlike binary computing, where bits can only represent a 0 or 1, qubit behavior exists in the realm of quantum mechanics. Through "superpositioning," a qubit can represent a 0, a 1, or any proportion between. This vastly increases a quantum computer's processing speed compared to today's computers. Experts are now investigating the inside of a quantum-dot-based light emitter.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Physics: Acoustics and Ultrasound
Published

Robotic glove that 'feels' lends a 'hand' to relearn playing piano after a stroke      (via sciencedaily.com)     Original source 

A new soft robotic glove is lending a 'hand' and providing hope to piano players who have suffered a disabling stroke or other neurotrauma. Combining flexible tactile sensors, soft actuators and AI, this robotic glove is the first to 'feel' the difference between correct and incorrect versions of the same song and to combine these features into a single hand exoskeleton. Unlike prior exoskeletons, this new technology provides precise force and guidance in recovering the fine finger movements required for piano playing and other complex tasks.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

Research breakthrough could be significant for quantum computing future      (via sciencedaily.com)     Original source 

Scientists using one of the world's most powerful quantum microscopes have made a discovery that could have significant consequences for the future of computing. Researchers have discovered a spatially modulating superconducting state in a new and unusual superconductor Uranium Ditelluride (UTe2). This new superconductor may provide a solution to one of quantum computing's greatest challenges.

Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: Quantum Computing
Published

Researchers make a quantum computing leap with a magnetic twist      (via sciencedaily.com)     Original source 

Scientists and engineers have announced a significant advancement in developing fault-tolerant qubits for quantum computing. In a pair of articles, they report that, in experiments with flakes of semiconductor materials -- each only a single layer of atoms thick -- they detected signatures of 'fractional quantum anomalous Hall' (FQAH) states. The team's discoveries mark a first and promising step in constructing a type of fault-tolerant qubit because FQAH states can host anyons -- strange 'quasiparticles' that have only a fraction of an electron's charge. Some types of anyons can be used to make what are called 'topologically protected' qubits, which are stable against any small, local disturbances.

Computer Science: Encryption Physics: Acoustics and Ultrasound
Published

How secure are voice authentication systems really?      (via sciencedaily.com)     Original source 

Computer scientists have discovered a method of attack that can successfully bypass voice authentication security systems with up to a 99% success rate after only six tries.

Physics: Acoustics and Ultrasound
Published

Researchers use ultrasound to control orientation of small particles      (via sciencedaily.com)     Original source 

Acoustic waves may be able to control how particles sort themselves. While researchers have been able to separate particles based on their shape -- for example, bacteria from other cells -- for years, the ability to control their movement has remained a largely unsolved problem, until now. Using ultrasound technology and a nozzle, researchers have separated, controlled and ejected different particles based on their shape and various properties.

Energy: Alternative Fuels Physics: Acoustics and Ultrasound
Published

Wind farm noise exposure doesn't wake people up from their slumber more than road traffic noise      (via sciencedaily.com)     Original source 

Short exposure to wind farm and road traffic noise triggers a small increase in people waking from their slumber that can fragment their sleep patterns, according to new research. But importantly, the new study also shows that wind farm noise isn't more disruptive to sleep than road traffic, which was a little more disruptive at the loudest audio level but not at more common levels. Sleep researchers have studied the impact of exposure to wind farm noise during sleep in three new scientific publications to better understand its impact.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

'Toggle switch' can help quantum computers cut through the noise      (via sciencedaily.com)     Original source 

What good is a powerful computer if you can't read its output? Or readily reprogram it to do different jobs? People who design quantum computers face these challenges, and a new device may make them easier to solve.

Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Nanophotonics: Coupling light and matter      (via sciencedaily.com)     Original source 

Researchers have developed a metasurface that enables strong coupling effects between light and transition metal dichalcogenides (TMDCs).

Geoscience: Earthquakes Physics: Acoustics and Ultrasound
Published

When soft spheres make porous media stiffer      (via sciencedaily.com)     Original source 

Porous media such as concrete physically represent a spherical packing of different components -- in this case cement, rock and water. The mechanical properties of such mixtures are still difficult to calculate due to their discretized nature. A team has now been able to investigate an unexpected property of mixtures of granular media consisting of soft and stiff spherical particles. For this purpose, a combination of ultrasound investigations and X-ray computed tomographic imaging was employed, allowing a three-dimensional (3D) characterization and evaluation. The discovery could contribute to safer future building in earthquake zones.

Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Combining twistronics with spintronics could be the next giant leap in quantum electronics      (via sciencedaily.com)     Original source 

Quantum researchers twist double bilayers of an antiferromagnet to demonstrate tunable moiré magnetism.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: Acoustics and Ultrasound
Published

A 'spy' in the belly      (via sciencedaily.com)     Original source 

To ensure that wounds remain tightly sealed in the abdomen after surgery, researchers have developed a patch with a sensor function. The polymer patch warns before the occurrence of dangerous leaks on sutures in the gastrointestinal tract take hold, while closes the areas on its own. A new material now enables a fast, easy and non-invasive leak diagnosis.

Chemistry: Inorganic Chemistry Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

For experimental physicists, quantum frustration leads to fundamental discovery      (via sciencedaily.com)     Original source 

A team of physicists recently announced that they have discovered a new phase of matter. Called the 'chiral bose-liquid state,' the discovery opens a new path in the age-old effort to understand the nature of the physical world.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New technique in error-prone quantum computing makes classical computers sweat      (via sciencedaily.com)     Original source 

Today's quantum computers often calculate the wrong answer because of noisy environments that interfere with the quantum entanglement of qubits. IBM Quantum has pioneered a technique that accounts for the noise to achieve reliable results. They tested this error mitigation strategy against supercomputer simulations run by physicists, and for the hardest calculations, the quantum computer bested the supercomputer. This is evidence for the utility of today's noisy quantum computers for performing real-world calculations.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breakthrough: Scientists develop artificial molecules that behave like real ones      (via sciencedaily.com)     Original source 

Scientists have developed synthetic molecules that resemble real organic molecules. A collaboration of researcher can now simulate the behavior of real molecules by using artificial molecules.