Showing 20 articles starting at article 361
< Previous 20 articles Next 20 articles >
Categories: Physics: Acoustics and Ultrasound, Physics: Quantum Computing
Published Quantum computer applied to chemistry



There are high expectations that quantum computers may deliver revolutionary new possibilities for simulating chemical processes. This could have a major impact on everything from the development of new pharmaceuticals to new materials. Researchers have now used a quantum computer to undertake calculations within a real-life case in chemistry.
Published Embracing variations: Physicists analyze noise in Lambda-type quantum memory



In the future, communications networks and computers will use information stored in objects governed by the microscopic laws of quantum mechanics. This capability can potentially underpin communication with greatly enhanced security and computers with unprecedented power. A vital component of these technologies will be memory devices capable of storing quantum information to be retrieved at will.
Published Rock, paper, scissors: Searching for stronger nonlocality using quantum computers



In the quantum world particles can instantaneously know about each other's state, even when separated by large distances. This is known as nonlocality. Now, A research group has produced some interesting findings on the Hardy nonlocality that have important ramifications for understanding quantum mechanics and its potential applications in communications.
Published Long-distance quantum teleportation enabled by multiplexed quantum memories



Researchers report having achieved quantum teleportation from a photon to a solid-state qubit over a distance of 1km, with a novel approach using multiplexed quantum memories.
Published A team creates 'quantum composites' for various electrical and optical innovations



A team has shown in the laboratory the unique and practical function of newly created materials, which they called quantum composites, that may advance electrical, optical, and computer technologies.
Published Quantum liquid becomes solid when heated



Solids can be melted by heating, but in the quantum world it can also be the other way around: An experimental team has shown how a quantum liquid forms supersolid structures by heating. The scientists obtained a first phase diagram for a supersolid at finite temperature.
Published Physicists discover transformable nano-scale electronic devices



The nano-scale electronic parts in devices like smartphones are solid, static objects that once designed and built cannot transform into anything else. But physicists have reported the discovery of nano-scale devices that can transform into many different shapes and sizes even though they exist in solid states.
Published Researchers help AI express uncertainty to improve health monitoring tech



A team of engineering and health researchers has developed a tool that improves the ability of electronic devices to detect when a human patient is coughing, which has applications in health monitoring. The new tool relies on an advanced artificial intelligence (AI) algorithm that helps the AI better identify uncertainty when faced with unexpected data in real-world situations.
Published Laser light hybrids control giant currents at ultrafast times



The flow of matter, from macroscopic water currents to the microscopic flow of electric charge, underpins much of the infrastructure of modern times. In the search for breakthroughs in energy efficiency, data storage capacity, and processing speed, scientists search for ways in which to control the flow of quantum aspects of matter such as the 'spin' of an electron -- its magnetic moment -- or its 'valley state', a novel quantum aspect of matter found in many two dimensional materials. A team of researchers has recently discovered a route to induce and control the flow of spin and valley currents at ultrafast times with specially designed laser pulses, offering a new perspective on the ongoing search for the next generation of information technologies.
Published Backscattering protection in integrated photonics is impossible with existing technologies



Researchers raise fundamental questions about the proposed value of topological protection against backscattering in integrated photonics.
Published AI-equipped eyeglasses read silent speech



Researchers have developed a silent-speech recognition interface that uses acoustic-sensing and artificial intelligence to continuously recognize up to 31 unvocalized commands, based on lip and mouth movements.
Published DMI allows magnon-magnon coupling in hybrid perovskites



An international group of researchers has created a mixed magnon state in an organic hybrid perovskite material by utilizing the Dzyaloshinskii--Moriya-Interaction (DMI). The resulting material has potential for processing and storing quantum computing information.
Published Absolute zero in the quantum computer



Absolute zero cannot be reached -- unless you have an infinite amount of energy or an infinite amount of time. Scientists in Vienna (Austria) studying the connection between thermodynamics and quantum physics have now found out that there is a third option: Infinite complexity. It turns out that reaching absolute zero is in a way equivalent to perfectly erasing information in a quantum computer, for which an infinetly complex quantum computer would be required.
Published Detecting, predicting, and preventing aortic ruptures with computational modeling



According to some estimates, up to 80% of patients who experience a ruptured abdominal aortic aneurysm will die before they reach the hospital or during surgery. But early intervention can prevent rupture and improve outcomes. Researchers have now made a computational model of the cardiovascular system in order to predict early AAA rupture and monitor patients' blood vessel conditions. They mimicked specific health conditions and investigated various hemodynamic parameters using image-based computational blood dynamics.
Published Smart films help to make loudspeakers lighter and more energy-efficient



Scientists are developing intelligent materials that are opening up new avenues in sound reproduction technology: lightweight loudspeakers that use far less energy than their conventional counterparts, novel shapes for sound and signal generators and applications involving noise cancelling textiles. The basis for these smart materials are ultrathin silicone films that can act as artificial muscles with their own built-in sensors.
Published Can a solid be a superfluid? Engineering a novel supersolid state from layered 2D materials



Physicists predict that layered electronic 2D semiconductors can host a curious quantum phase of matter called the supersolid. This counterintuitive quantum material simultaneously forms a rigid crystal, and yet at the same time allows particles to flow without friction, with all the particles belong to the same single quantum state.
Published Pulsing ultrasound waves could someday remove microplastics from waterways


Colorful particles of plastic drift along under the surface of most waterways. These barely visible microplastics -- less than 5 mm wide -- are potentially harmful to aquatic animals and plants, as well as humans. Now, a team reports a two-stage device made with steel tubes and pulsing sound waves that removes most of the plastic particles from real water samples.
Published Highly charged ions melt nano gold nuggets



Shooting ions is very different from shooting a gun: By firing highly charged ions onto tiny gold structures, these structures can be modified in technologically interesting ways. Surprisingly, the key is not the force of impact, but the electric charge of the projectiles.
Published Nanophysics: The right twist


Stacked layers of ultrathin semiconductor materials feature phenomena that can be exploited for novel applications. Physicists have studied effects that emerge by giving two layers a slight twist.
Published What do the elements sound like?


In chemistry, we have He, Fe and Ca -- but what about do, re and mi? Using a technique called data sonification, a recent college graduate has converted the visible light given off by each of the elements into soundwaves. The notes produced for each element are unique, complex mixtures and are the first step toward an interactive, musical periodic table.