Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Physics: Acoustics and Ultrasound, Space: The Solar System
Published Tiniest free-floating brown dwarf



Brown dwarfs are objects that straddle the dividing line between stars and planets. They form like stars, growing dense enough to collapse under their own gravity, but they never become dense and hot enough to begin fusing hydrogen and turn into a star. At the low end of the scale, some brown dwarfs are comparable with giant planets, weighing just a few times the mass of Jupiter.
Published Some icy exoplanets may have habitable oceans and geysers



A new study expands the search for life beyond our solar system by indicating that 17 exoplanets (worlds outside our solar system) could have oceans of liquid water, an essential ingredient for life, beneath icy shells. Water from these oceans could occasionally erupt through the ice crust as geysers. The science team calculated the amount of geyser activity on these exoplanets, the first time these estimates have been made. They identified two exoplanets sufficiently close where signs of these eruptions could be observed with telescopes.
Published NASA's Webb stuns with new high-definition look at exploded star



Like a shiny, round ornament ready to be placed in the perfect spot on a holiday tree, supernova remnant Cassiopeia A (Cas A) gleams in a new image.
Published 14-inch spacecraft delivers new details about 'hot Jupiters'



The Colorado Ultraviolet Transit Experiment (CUTE) spacecraft is about the size of a cereal box. It has also recorded incredibly detailed measurements of the atmospheres of planets hundreds of light-years from Earth.
Published Ryugu samples illuminate terrestrial weathering effects on primitive meteorites



Asteroids offer valuable windows into the early solar system, given that they are remnants of planetary embryos that failed to form into planets. A recent analysis of samples from Ryugu offered insights into the composition of water- and carbon-rich small bodies in the solar system.
Published When is an aurora not an aurora?



While auroras occur at high latitude, the associated phenomena Steve and the picket fence occur farther south and at lower altitude. Their emissions also differ from aurora. A physics graduate student has proposed a physical mechanism behind these emissions, and a rocket launch to test the theory. She argues that an electric field in the upper atmosphere parallel to Earth's magnetic field could explain the green picket fence spectrum and perhaps Steve and the enhanced aurora.
Published Scholars say it's time to declare a new epoch on the moon, the 'lunar Anthropocene'



According to anthropologists and geologists, it's time to acknowledge humans have become the dominant force shaping the moon's environment by declaring a new geological epoch for the moon: the Lunar Anthropocene. They argue the new epoch may have dawned in 1959 when the USSR's unmanned spacecraft Luna 2 alighted on the lunar surface.
Published Giant doubts about giant exomoons



The extrasolar planets Kepler-1625b and Kepler-1708b are supposedly the home worlds of the first known exomoons. A new study now comes to a different conclusion.
Published Soundwaves harden 3D-printed treatments in deep tissues



Engineers have developed a bio-compatible ink that solidifies into different 3D shapes and structures by absorbing ultrasound waves. Because the material responds to sound waves rather than light, the ink can be used in deep tissues for biomedical purposes ranging from bone healing to heart valve repair.
Published Limitations of asteroid crater lakes as climate archives



In southern Germany just north of the Danube, there lies a large circular depression between the hilly surroundings: the Nördlinger Ries. Almost 15 million years ago, an asteroid struck this spot. Today, the impact crater is one of the most useful analogues for asteroid craters on early Mars. Studying the deposits of the former lake that formed in the crater is particularly informative. These deposits have been of great interest ever since NASA began exploring Martian craters for signs of water and life on Mars.
Published Unlocking neutron star rotation anomalies: Insights from quantum simulation



A collaboration between quantum physicists and astrophysicists has achieved a significant breakthrough in understanding neutron star glitches. They were able to numerically simulate this enigmatic cosmic phenomenon with ultracold dipolar atoms. This research establishes a strong link between quantum mechanics and astrophysics and paves the way for quantum simulation of stellar objects from Earth.
Published Can signs of life be detected from Saturn's frigid moon?



Researchers have shown unambiguous laboratory evidence that amino acids transported in the ice plumes of Saturn's moon, Eceladus, can survive impact speeds of up to 4.2 km/s, supporting their detection during sampling by spacecraft.
Published Teaching physics from the din of flying discs



The sound a disc makes while soaring through the air is full of information about how fast the disc is flying and how quickly it spins. This inspired Kyle S. Dalton of Penn State University to combine disc golf and acoustics into an interactive acoustic signal processing lesson. He set three microphones in a line and connected them to equipment that converts each microphone's signal to a data point. Then he threw a disc with a small whistle mounted on top and recorded the flying disc's acoustical signal. The resulting dataset can be used to learn basic processing tools and practice data visualization.
Published Tracking undetectable space junk



Satellite and spacecraft operators may finally be able to detect small pieces of debris orbiting Earth using a new approach. Colliding pieces of space debris emit electric signals that could help track small debris littering Earth's orbit, potentially saving satellites and spacecraft.
Published One of the largest magnetic storms in history quantified: Aurorae covered much of the night sky from the Tropics to the Polar Regions



An international multidisciplinary team consisting of solar physicists, geophysicists, and historians from nine countries analysed observations of an extreme solar-terrestrial storm reported in historical records from February 1872. Their findings confirm that a moderate sunspot group triggered one of the largest magnetic storms ever recorded, almost covering the entire night sky with colourful aurorae in both hemispheres. If such an extreme storm occurred today, it would severely disrupt modern technological infrastructure. Their study emphasizes the importance of looking at historical records in light of modern scientific knowledge.
Published Meteorites likely source of nitrogen for early Earth



Micrometeorites originating from icy celestial bodies in the outer Solar System may be responsible for transporting nitrogen to the near-Earth region in the early days of our solar system.
Published Discovery of planet too big for its sun throws off solar system formation models



The discovery of a planet that is far too massive for its sun is calling into question what was previously understood about the formation of planets and their solar systems.
Published Building blocks for life could have formed near new stars and planets



While life on Earth is relatively new, geologically speaking, the ingredients that combined to form it might be much older than once thought. The simplest amino acid, carbamic acid, could have formed alongside stars or planets within interstellar ices. The findings could be used to train deep space instruments like the James Webb Space Telescope to search for prebiotic molecules in distant, star-forming regions of the universe.
Published Network of robots can successfully monitor pipes using acoustic wave sensors



An inspection design method and procedure by which mobile robots can inspect large pipe structures has been demonstrated with the successful inspection of multiple defects on a three-meter long steel pipe using guided acoustic wave sensors.
Published Composition of asteroid Phaethon



Asteroid Phaethon, which is five kilometers in diameter, has been puzzling researchers for a long time. A comet-like tail is visible for a few days when the asteroid passes closest to the Sun during its orbit. However, the tails of comets are usually formed by vaporizing ice and carbon dioxide, which cannot explain this tail. The tail should be visible at Jupiter's distance from the Sun.