Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Paleontology: Dinosaurs, Physics: Acoustics and Ultrasound
Published New cardiovascular imaging approach provides a better view of dangerous plaques



Researchers have developed a new catheter-based device that combines two powerful optical techniques to image the dangerous plaques that can build up inside the arteries that supply blood to the heart. By providing new details about plaque, the device could help clinicians and researchers improve treatments for preventing heart attacks and strokes.
Published Fossil named 'Attenborough's strange bird' was the first in its kind without teeth



A new fossil, named 'Attenborough's strange bird' after naturalist and documentarian Sir David Attenborough, is the first of its kind to evolve a toothless beak. It's from a branch of the bird family tree that went extinct in the mass extinction 66 million years ago, and this strange bird is another puzzle piece that helps explain why some birds -- and their fellow dinosaurs -- went extinct, and others survived to today.
Published Pythagoras was wrong: there are no universal musical harmonies, new study finds



The tone and tuning of musical instruments has the power to manipulate our appreciation of harmony, new research shows. The findings challenge centuries of Western music theory and encourage greater experimentation with instruments from different cultures.
Published A lighthouse in the Gobi desert



A new study explores the weight great fossil sites have on our understanding of evolutionary relationships between fossil groups and quantified the power these sites have on our understanding of evolutionary history. Surprisingly, the authors discovered that the wind-swept sand deposits of the Late Cretaceous Gobi Desert's extraordinarily diverse and well-preserved fossil lizard record shapes our understanding of their evolutionary history more than any other site on the planet.
Published Fundamental equation for superconducting quantum bits revised



Physicists have uncovered that Josephson tunnel junctions -- the fundamental building blocks of superconducting quantum computers -- are more complex than previously thought. Just like overtones in a musical instrument, harmonics are superimposed on the fundamental mode. As a consequence, corrections may lead to quantum bits that are 2 to 7 times more stable. The researchers support their findings with experimental evidence from multiple laboratories across the globe.
Published The hidden rule for flight feathers -- and how it could reveal which dinosaurs could fly



Scientists examined hundreds of birds in museum collections and discovered a suite of feather characteristics that all flying birds have in common. These 'rules' provide clues as to how the dinosaur ancestors of modern birds first evolved the ability to fly, and which dinosaurs were capable of flight.
Published Dinosaurs' success helped by specialized stance and gait, study finds



Dinosaurs' range of locomotion made them incredibly adaptable, researchers have found.
Published Scientist shows focused ultrasound can reach deep into the brain to relieve pain



Scientists have found soundwaves from low-intensity focused ultrasound aimed at a place deep in the brain called the insula can reduce both the perception of pain and other effects of pain, such as heart rate changes.
Published Photonics-based wireless link breaks speed records for data transmission



Researchers demonstrated a 300 GHz-band wireless link that was able to transmit data over a single channel at a rate of 240 gigabits per second. The wireless communication system employs signal generators based on lasers that have ultra-low phase noise in the sub-terahertz band. This rate is the highest so far reported at these frequencies and is a substantial step forward in 300 GHz-band communications for 6G networks.
Published Scientists pinpoint growth of brain's cerebellum as key to evolution of bird flight



Evolutionary biologists report they have combined PET scans of modern pigeons along with studies of dinosaur fossils to help answer an enduring question in biology: How did the brains of birds evolve to enable them to fly?
Published Sound-powered sensors stand to save millions of batteries



Researchers are developing a new type of sensor that reacts to certain sound waves, causing it to vibrate. The sensor is a metamaterial that acquires its special properties through the structuring of the material. Passive sound-sensitive sensors could be used to monitor buildings, earthquakes or certain medical devices and save millions of batteries.
Published Virtual noise assessment for passenger jet of the future



Instead of tubular commercial aircraft, other designs could be used in the future: Jets with a blended wing body would fly more efficiently and make less noise -- but how would the noise emissions from these new types of aircraft affect people?
Published Uncovering the secrets behind the silent flight of owls



Owls produce negligible noise while flying. While many studies have linked the micro-fringes in owl wings to their silent flight, the exact mechanisms have been unclear. Now, a team of researchers has uncovered the effects of these micro-fringes on the sound and aerodynamic performance of owl wings through computational fluid dynamic simulations. Their findings can inspire biomimetic designs for the development of low-noise fluid machinery.
Published Student discovers 200-million-year-old flying reptile



Gliding winged-reptiles were amongst the ancient crocodile residents of the Mendip Hills in Somerset, England, researchers at the have revealed.
Published Low-frequency ultrasound can improve oxygen saturation in blood



Scientists have revealed that low-frequency ultrasound influences blood parameters. The findings suggest that ultrasound's effect on haemoglobin can improve oxygen's transfer from the lungs to bodily tissues. The research was undertaken on 300 blood samples collected from 42 pulmonary patients.
Published Towards the quantum of sound



A team of scientists has succeeded in cooling traveling sound waves in wave-guides considerably further than has previously been possible using laser light. This achievement represents a significant move towards the ultimate goal of reaching the quantum ground state of sound in wave-guides. Unwanted noise generated by the acoustic waves at room temperature can be eliminated. This experimental approach both provides a deeper understanding of the transition from classical to quantum phenomena of sound and is relevant to quantum communication systems and future quantum technologies.
Published Pushing the boundaries of ultrasound imaging: Breaking new ground with ultrafast technology



Researchers have achieved a successful contrast agent-free imaging of complex structure of kidney vessels.
Published Molecularly designing polymer networks to control sound damping



The world is filled with a myriad of sounds and vibrations -- the gentle tones of a piano drifting down the hall, the relaxing purr of a cat laying on your chest, the annoying hum of the office lights. Imagine being able to selectively tune out noises of a certain frequency. Researchers have now synthesized polymer networks with two distinct architectures and crosslink points capable of dynamically exchanging polymer strands to understand how the network connectivity and bond exchange mechanisms govern the overall damping behavior of the network. The incorporation of dynamic bonds into the polymer network demonstrates excellent damping of sound and vibrations at well-defined frequencies.
Published New research sheds light on an old fossil solving an evolutionary mystery



Picrodontids -- an extinct family of placental mammals that lived several million years after the extinction of the dinosaurs -- are not primates as previously believed.
Published 'Juvenile T. rex' fossils are a distinct species of small tyrannosaur



A new analysis of fossils believed to be juveniles of T. rex now shows they were adults of a small tyrannosaur, with narrower jaws, longer legs, and bigger arms than T. rex. The species, Nanotyrannus lancensis, was first named decades ago but later reinterpreted as a young T. rex. The new study shows Nanotyrannus was a smaller, longer-armed relative of T. rex, with a narrower snout.