Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

Physicists discover an exotic material made of bosons      (via sciencedaily.com)     Original source 

Take a lattice -- a flat section of a grid of uniform cells, like a window screen or a honeycomb -- and lay another, similar lattice above it. But instead of trying to line up the edges or the cells of both lattices, give the top grid a twist so that you can see portions of the lower one through it. This new, third pattern is a moiré, and it's between this type of overlapping arrangement of lattices of tungsten diselenide and tungsten disulfide where physicists found some interesting material behaviors.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Nuclear Physics: General Physics: Quantum Physics
Published

Calculation shows why heavy quarks get caught up in the flow      (via sciencedaily.com)     Original source 

Theorists have calculated how quickly a melted soup of quarks and gluons -- the building blocks of protons and neutrons -- transfers its momentum to heavy quarks. The calculation will help explain experimental results showing heavy quarks getting caught up in the flow of matter generated in heavy ion collisions.

Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Illuminating the molecular ballet in living cells      (via sciencedaily.com)     Original source 

Researchers have developed one of the world's fastest cameras capable of detecting fluorescence from single molecules.

Chemistry: Biochemistry Offbeat: General
Published

House of moveable wooden walls unveiled, promising a cheaper, greener alternative to 'knocking through'.      (via sciencedaily.com)     Original source 

Architects have designed a prototype home constructed with flexible wooden partition walls which can be shifted to meet the changing needs of residents. The invention aims to reduce waste and carbon while also improving living conditions for those who cannot afford expensive refurbishments.

Chemistry: Biochemistry Engineering: Graphene
Published

Unveiling the nanoscale frontier: innovating with nanoporous model electrodes      (via sciencedaily.com)     Original source 

Researchers have introduced a next-generation model membrane electrode that promises to revolutionize fundamental electrochemical research.

Chemistry: Biochemistry Energy: Alternative Fuels Environmental: General Geoscience: Environmental Issues
Published

Record 19.31% efficiency with organic solar cells      (via sciencedaily.com)     Original source 

Researchers have achieved a breakthrough power-conversion efficiency (PCE) of 19.31% with organic solar cells (OSCs), also known as polymer solar cells. This remarkable binary OSC efficiency will help enhance applications of these advanced solar energy devices.

Biology: Biochemistry Biology: Zoology Chemistry: Biochemistry
Published

Biodegradable plastic from sugar cane also threatens the environment      (via sciencedaily.com)     Original source 

Plastic made from cane sugar also threatens the environment. Researchers from the University of Gothenburg have found that perch change their behavior when exposed to so-called bioplastic.

Chemistry: Biochemistry
Published

PAINTing a wound-healing ink into cuts with a 3D-printing pen      (via sciencedaily.com)     Original source 

The body is pretty good at healing itself, though more severe wounds can require bandages or stitches. But researchers have now developed a wound-healing ink that can actively encourage the body to heal by exposing the cut to immune-system vesicles. The ink can be spread into a cut of any shape using a 3D-printing pen, and in mice, the technology nearly completely repaired wounds in just 12 days.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

The 'breath' between atoms -- a new building block for quantum technology      (via sciencedaily.com)     Original source 

Researchers have discovered they can detect atomic 'breathing,' or the mechanical vibration between two layers of atoms, by observing the type of light those atoms emitted when stimulated by a laser. The sound of this atomic 'breath' could help researchers encode and transmit quantum information.

Chemistry: Biochemistry Computer Science: General Engineering: Robotics Research
Published

Newborn baby inspires sensor design that simulates human touch      (via sciencedaily.com)     Original source 

As we move into a world where human-machine interactions are becoming more prominent, pressure sensors that are able to analyze and simulate human touch are likely to grow in demand.

Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Lab-grown mini lungs could accelerate the study of respiratory diseases      (via sciencedaily.com)     Original source 

Researchers have collaborated to refine a cell culture technology platform that grows genetically identical lung buds from human embryonic stem cells.

Biology: Biochemistry Biology: Cell Biology Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Offbeat: Computers and Math Offbeat: General Offbeat: Plants and Animals
Published

A protein mines, sorts rare earths better than humans, paving way for green tech      (via sciencedaily.com)     Original source 

Rare earth elements, like neodymium and dysprosium, are a critical component to almost all modern technologies, from smartphones to hard drives, but they are notoriously hard to separate from the Earth's crust and from one another. Scientists have discovered a new mechanism by which bacteria can select between different rare earth elements, using the ability of a bacterial protein to bind to another unit of itself, or 'dimerize,' when it is bound to certain rare earths, but prefer to remain a single unit, or 'monomer,' when bound to others.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

First X-ray of a single atom      (via sciencedaily.com)     Original source 

Scientists have taken the world's first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement could revolutionize the way scientists detect the materials.

Chemistry: Biochemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

World's fastest electron microscope      (via sciencedaily.com)     Original source 

Researchers have succeeded in filming the interactions of light and matter in an electron microscope with attosecond time resolution.

Chemistry: Biochemistry Chemistry: General Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Physics
Published

A nanocrystal shines on and off indefinitely      (via sciencedaily.com)     Original source 

Optical probes have led to numerous breakthroughs in applications like optical memory, nanopatterning, and bioimaging, but existing options have limited lifespans and will eventually 'photobleach.' New work demonstrates a promising, longer-lasting alternative: ultra-photostable avalanching nanoparticles that can turn on and off indefinitely in response to near-infrared light from simple lasers.

Physics: Acoustics and Ultrasound Physics: General
Published

Actively reducing noise by ionizing air      (via sciencedaily.com)     Original source 

Scientists show that a thin layer of plasma, created by ionizing air, could be promising as an active sound absorber, with applications in noise control and room acoustics.

Chemistry: Biochemistry
Published

Shedding light on the complex flow dynamics within the small intestine      (via sciencedaily.com)     Original source 

A novel microfluidic device revealing diverse and dynamic flows in the small intestine has now been developed. An innovative experimental platform uses microscopic fluorescent beads as substitutes for gut bacteria in dissected small intestine sections, allowing one to visualize and quantitatively analyze the luminal dynamic flow in the tissues deformed by a pneumatic actuator.