Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Computer Science: General
Published Advanced AI-based techniques scale-up solving complex combinatorial optimization problems



A framework based on advanced AI techniques can solve complex, computationally intensive problems faster and in a more more scalable way than state-of-the-art methods, according to a new study.
Published Researchers demonstrate the first chip-based 3D printer



Researchers have demonstrated the first chip-based 3D printer, a tiny device that emits reconfigurable beams of visible light into a well of resin that rapidly cures into a solid shape. The advance could enable a 3D printer small enough to fit in the palm of a person's hand.
Published Perturbations simplify the study of 'super photons'



Thousands of particles of light can merge into a type of 'super photon' under suitable conditions. Physicists call such a state a photon Bose-Einstein condensate. Researchers have now shown that this exotic quantum state obeys a fundamental theorem of physics. This finding now allows one to measure properties of photon Bose-Einstein condensates which are usually difficult to access.
Published Discovery highlights 'critical oversight' in perceived security of wireless networks



A research team has uncovered an eavesdropping security vulnerability in high-frequency and high-speed wireless backhaul links, widely employed in critical applications such as 5G wireless cell phone signals and low-latency financial trading on Wall Street.
Published Crystal engineering modifies 2D metal halide perovskites into 1D nanowires



Engineers have created a patent-pending method that creates layered perovskite nanowires with exceptionally well-defined and flexible cavities that exhibit a wide range of unusual optical properties beyond conventional perovskites.
Published Seeking social proximity improves flight routes among pigeons



A new study looked at the social influences on pigeon flight routes. Comparing the flight patterns of pairs of pigeons to a computer model, the researcher found that flight paths are improved as younger birds learn the route from older birds and also make route improvements, leading to overall more efficient routes over generations.
Published AIs are irrational, but not in the same way that humans are



Large Language Models behind popular generative AI platforms like ChatGPT gave different answers when asked to respond to the same reasoning test and didn't improve when given additional context, finds a new study.
Published A new way of designing auxetic materials



Auxetics defy common sense, widening when stretched and narrowing when compressed. Researchers have now made the process of using them much easier, paving the way for new types of auxetic products -- from better sneaker insoles to blast-resilient buildings.
Published Using AI to decode dog vocalizations



Have you ever wished you could understand what your dog is trying to say to you? Researchers are exploring the possibilities of AI, developing tools that can identify whether a dog's bark conveys playfulness or aggression.
Published New model allows a computer to understand human emotions



Researchers have developed a model that enables computers to interpret and understand human emotions, utilizing principles of mathematical psychology. In the future, the model can help the computer to adapt its own behavior and guide an irritated or anxious user in different ways. The implications of such technology are profound, offering a glimpse into a future where computers are not merely tools, but empathetic partners in user interaction.
Published New open-source platform allows users to evaluate performance of AI-powered chatbots



Researchers have developed a platform for the interactive evaluation of AI-powered chatbots such as ChatGPT. A team of computer scientists, engineers, mathematicians and cognitive scientists developed an open-source evaluation platform called CheckMate, which allows human users to interact with and evaluate the performance of large language models (LLMs).
Published Towards next-gen functional materials: direct observation of electron transfer in solids



Nanoscale electron transfer (ET) in solids is fundamental to the development of multifunctional materials. However, ET in solids is not yet clearly understood. Now, researchers achieved a direct observation of solid-state ET through X-ray crystal analysis by fabricating a novel double-walled non-covalent crystalline nanotube, which can absorb electron donor molecules and maintain its crystalline structure during ET. This innovative approach can lead to the design of novel functional materials soon.
Published Observing ultrafast photoinduced dynamics in a halogen-bonded supramolecular system



Researchers uncover how the halogen bond can be exploited to direct sequential dynamics in the multi-functional crystals, offering crucial insights for developing ultrafast-response times for multilevel optical storage.
Published Altered carbon points toward sustainable manufacturing



Researchers develop a vastly more productive way to convert carbon dioxide into useful materials and compounds.
Published Transition-metal-free zeolite catalyst for direct conversion of methane to methanol



Direct oxidation of methane to methanol is dominated by transition- or noble-metal-based catalysts, thus making the reaction quite expensive. To make the process efficient and cost-effective, researchers developed a transition-metal-free aluminosilicate ferrierite zeolite catalyst that can produce methanol by using methane and nitrous oxide as starting materials. The new catalyst ensures excellent methanol production efficiency, one of the highest recorded rates in the literature thus far.
Published Scientists develop 'x-ray vision' technique to see inside crystals



A team of researchers has created a new way to visualize crystals by peering inside their structures, akin to having X-ray vision. Their new technique -- which they aptly named 'Crystal Clear' -- combines the use of transparent particles and microscopes with lasers that allow scientists to see each unit that makes up the crystal and to create dynamic three-dimensional models.
Published Children's visual experience may hold key to better computer vision training



A novel, human-inspired approach to training artificial intelligence (AI) systems to identify objects and navigate their surroundings could set the stage for the development of more advanced AI systems to explore extreme environments or distant worlds, according to new research.
Published This self-powered sensor could make MRIs more efficient



MRI scans are commonly used to diagnose a variety of conditions, anything from liver disease to brain tumors. But, as anyone who has been through one knows, patients must remain completely still to avoid blurring the images and requiring a new scan. A prototype device could change that. The self-powered sensor detects movement and shuts down an MRI scan in real time, improving the process for patients and technicians.
Published AI saving humans from the emotional toll of monitoring hate speech



A team of researchers have developed a new machine-learning method that detects hate speech on social media platforms with 88 per cent accuracy, saving employees from hundreds of hours of emotionally damaging work.
Published Combining simulations and experiments to get the best out of Fe3Al



Researchers combined computer simulations and transmission electron microscopy experiments to better understand the ordering mobility and formation of microstructure domains in Fe3Al alloy. They were able to correlate structural changes with heat treatment to understand how particular mechanical behavior can be achieved. This is expected to allow the superelastic properties of Fe3Al to harnessed for the 3D printing of construction materials for absorbing seismic activity.