Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Making quantum bits fly      (via sciencedaily.com)     Original source 

Physicists are developing a method that could enable the stable exchange of information in quantum computers. In the leading role: photons that make quantum bits 'fly'.

Computer Science: General
Published

3D reflector microchips could speed development of 6G wireless      (via sciencedaily.com)     Original source 

Researchers have developed a semiconductor chip that will enable ever-smaller devices to operate at the higher frequencies needed for future 6G communication technology.

Computer Science: Artificial Intelligence (AI) Computer Science: General
Published

AI can speed design of health software      (via sciencedaily.com)     Original source 

Artificial intelligence helped clinicians to accelerate the design of diabetes prevention software, a new study finds.

Computer Science: General
Published

Can you tell AI-generated people from real ones?      (via sciencedaily.com)     Original source 

If you recently had trouble figuring out if an image of a person is real or generated through artificial intelligence (AI), you're not alone. A new study found that people had more difficulty than was expected distinguishing who is a real person and who is artificially generated.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Physics: Optics
Published

Aluminum nanoparticles make tunable green catalysts      (via sciencedaily.com)     Original source 

A nanotechnology pioneer has uncovered a transformative approach to harnessing the catalytic power of aluminum nanoparticles by annealing them in various gas atmospheres at high temperatures.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Harmful 'forever chemicals' removed from water with new electrocatalysis method      (via sciencedaily.com)     Original source 

Scientists have developed new electrochemical approaches to clean up pollution from 'forever chemicals' found in clothing, food packaging, firefighting foams, and a wide array of other products. A new study describes nanocatalysts developed to remediate per- and polyfluoroalkyl substances, known as PFAS.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

New method measures the 3D position of individual atoms      (via sciencedaily.com)     Original source 

Since more than a decade it has been possible for physicists to accurately measure the location of individual atoms to a precision of smaller than one thousandth of a millimeter using a special type of microscope. However, this method has so far only provided the x and y coordinates. Information on the vertical position of the atom -- i.e., the distance between the atom and the microscope objective -- is lacking. A new method has now been developed that can determine all three spatial coordinates of an atom with one single image.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Shortcut to Success: Toward fast and robust quantum control through accelerating adiabatic passage      (via sciencedaily.com)     Original source 

Researchers achieved the acceleration of adiabatic evolution of a single spin qubit in gate-defined quantum dots. After the pulse optimization to suppress quasistatic noises, the spin flip fidelity can be as high as 97.5% in GaAs quantum dots. This work may be useful to achieve fast and high-fidelity quantum computing.

Chemistry: Inorganic Chemistry Engineering: Robotics Research Physics: Optics
Published

A key to the future of robots could be hiding in liquid crystals      (via sciencedaily.com)     Original source 

Robots and cameras of the future could be made of liquid crystals, thanks to a new discovery that significantly expands the potential of the chemicals already common in computer displays and digital watches. The findings are a simple and inexpensive way to manipulate the molecular properties of liquid crystals with light exposure.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Computer Science: Quantum Computers Engineering: Robotics Research Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

AI-enabled atomic robotic probe to advance quantum material manufacturing      (via sciencedaily.com)     Original source 

Scientists have pioneered a new methodology of fabricating carbon-based quantum materials at the atomic scale by integrating scanning probe microscopy techniques and deep neural networks. This breakthrough highlights the potential of implementing artificial intelligence at the sub-angstrom scale for enhanced control over atomic manufacturing, benefiting both fundamental research and future applications.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry
Published

It's not only opposites that attract -- new study shows like-charged particles can come together      (via sciencedaily.com)     Original source 

A study shows that similarly charged particles can sometimes attract, rather than repel. The team found that like-charged particles suspended in liquids can attract one another at long-range, depending on the solvent and the sign of the charge. The study has immediate implications for processes that involve interactions in solution across various length-scales, including self-assembly, crystallization, and phase separation.

Computer Science: General
Published

Software speeds up drug development      (via sciencedaily.com)     Original source 

Sugars cover nearly all proteins present at the surface of the cells in our bodies, forming a shield around the proteins. Thus, these sugars influence how cells interact with their environment including pathogens, playing an important role in medical drug development. GlycoSHIELD, a new computational approach to study the sugar shields of proteins, is resource-reducing, time-efficient and user-friendly.

Computer Science: General Environmental: General Geoscience: Environmental Issues
Published

Researchers use AI, Google street view to predict household energy costs on large scale      (via sciencedaily.com)     Original source 

An interdisciplinary team of experts has found a way to use artificial intelligence to analyze a household's passive design characteristics and predict its energy expenses with more than 74 percent accuracy. By combining their findings with demographic data including poverty levels, the researchers have created a comprehensive model for predicting energy burden across 1,402 census tracts and nearly 300,000 households in Chicago.

Biology: Biochemistry Biology: Cell Biology Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues
Published

Turning waste into gold      (via sciencedaily.com)     Original source 

Researchers have recovered gold from electronic waste. Their highly sustainable new method is based on a protein fibril sponge, which the scientists derive from whey, a food industry byproduct.

Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

When the music changes, so does the dance: Controlling cooperative electronic states in Kagome metals      (via sciencedaily.com)     Original source 

Playing a different sound track is, physically speaking, only a minute change of the vibration spectrum, yet its impact on a dance floor is dramatic. People long for this tiny trigger, and as a salsa changes to a tango completely different collective patterns emerge. For such a tiny stimulus to have an effect, the crowd needs to know more than just one dance. Electrons in metals tend to show only one behavior at zero temperature, when all kinetic energy is quenched.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Physics: Optics
Published

A bright idea for recycling rare-earth phosphors from used fluorescent bulbs      (via sciencedaily.com)     Original source 

Recycling facilities collect glass and mercury from thrown away fluorescent bulbs, but discarded lighting could also supply rare-earth metals for reuse. The 17 metals referred to as rare earths aren't all widely available and aren't easily extracted with existing recycling methods. Now, researchers have found a simpler way to collect slightly magnetic particles that contain rare-earth metals from spent fluorescent bulbs.