Showing 20 articles starting at article 641
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Computer Science: General
Published Interactive screen use reduces sleep time in kids



While screen time is generally known to affect sleep, new research suggests that interactive engagement, such as texting friends or playing video games, delays and reduces the time spent asleep to a greater extent than passive screen time, like watching television -- especially for teens.
Published Researchers create stable hybrid laser by 3D printing micro-optics onto fibers



For the first time, researchers have shown that 3D-printed polymer-based micro-optics can withstand the heat and power levels that occur inside a laser. The advance enables inexpensive compact and stable laser sources that would be useful in a variety of applications, including the lidar systems used for autonomous vehicles.
Published Towards next-generation nanocatalysts to revolutionize active electron transfer



Over the years, scientists have proposed many novel molecular systems for photoinduced electron transfer. Researchers have now developed a copolymer-conjugated nanocatalytic system that can drive efficient photoinduced electron transfer. They employed a temperature-responsive ternary random copolymer and coupled it to platinum nanoparticles. By enabling dynamic electron transfer and driving photoinduced hydrogen generation, this innovation can have far-reaching implications for artificial photosynthesis, electrochemical reactions, macromolecular recognition, and bio-inspired soft materials.
Published Saving endangered species: New AI method counts manatee clusters in real time



Accurately counting manatee aggregations within a region is crucial yet challenging. Harnessing the power of AI, researchers are using a deep learning-based crowd counting approach to automatically count the number of manatees in a designated region, using images captured from CCTV cameras, which are readily available, as input. The pioneering study not only addresses the technical challenges of counting in complex outdoor environments but also offers potential ways to aid endangered species.
Published Ultra-hard material to rival diamond discovered



Scientists have solved a decades-long puzzle and unveiled a near unbreakable substance that could rival diamond, as the hardest material on earth, a study says. Researchers found that when carbon and nitrogen precursors were subjected to extreme heat and pressure, the resulting materials -- known as carbon nitrides -- were tougher than cubic boron nitride, the second hardest material after diamond.
Published Spinning up control: Propeller shape helps direct nanoparticles



Self-propelled nanoparticles could potentially advance drug delivery and lab-on-a-chip systems -- but they are prone to go rogue with random, directionless movements. Now, an international team of researchers has developed an approach to rein in the synthetic particles.
Published Made-to-order diagnostic tests may be on the horizon



Researchers have made a breakthrough in diagnostic technology, inventing a 'lab on a chip' that can be 3D-printed in just 30 minutes. The chip has the potential to make on-the-spot testing widely accessible.
Published Scientists 3D print self-heating microfluidic devices



A fabrication process can produce self-heating microfluidic devices in one step using a multimaterial 3D printer. These devices, which can be made rapidly and cheaply in large numbers, could help clinicians in remote parts of the world detect diseases without expensive lab equipment.
Published Eco-friendly technologies for plastic production and biodegradation?



A new article covering an overview and trends of plastic production and degradation technology using microorganisms has been published. Eco-friendly and sustainable plastic production and degradation technology using microorganisms as a core technology to achieve a plastic circular economy was presented.
Published New conductive, cotton-based fiber developed for smart textiles



A single strand of newly developed fiber has the flexibility of cotton and the electric conductivity of the polymer, polyaniline. The new material has shown good potential for wearable e-textiles. The researchers tested the fibers with a system that powered an LED light and another that sensed ammonia gas. While intrinsically conductive, polyaniline is brittle and by itself, cannot be made into a fiber for textiles. To solve this, the researchers dissolved cotton cellulose from recycled t-shirts into a solution and the conductive polymer into another separate solution.
Published Researchers combine biopolymers derived from the ocean to replace synthetic plastic films



Crustacean and seaweed materials combined in a unique way could provide a sustainable alternative to plastic films.
Published Researchers safely integrate fragile 2D materials into devices



A new technique integrates 2D materials into devices and systems in a single step, while keeping surfaces and interfaces free from defects. This method could enable devices like those in computer chips to achieve better performance than those made with conventional fabrication techniques.
Published Polyethylene waste could be a thing of the past



Experts have developed a way of using polyethylene waste (PE) as a feedstock and converted it into valuable chemicals, via light-driven photocatalysis. PE is the most widely used plastic in the world including for daily food packaging, shopping bags and reagent bottles, and the researchers say that while recycling of PE is still in early development, it could be an untapped resource for re-use.
Published Immersive VR goggles for mice unlock new potential for brain science



New miniature virtual reality (VR) goggles provide more immersive experiences for mice living in laboratory settings. By more faithfully simulating natural environments, the researchers can more accurately and precisely study the neural circuitry that underlies behavior. Compared to current state-of-the-art systems, which simply surround mice with computer or projection screens, the new goggles provide a leap in advancement.
Published World's first logical quantum processor



A team has realized a key milestone in the quest for stable, scalable quantum computing. For the first time, the team has created a programmable, logical quantum processor, capable of encoding up to 48 logical qubits, and executing hundreds of logical gate operations. Their system is the first demonstration of large-scale algorithm execution on an error-corrected quantum computer, heralding the advent of early fault-tolerant, or reliably uninterrupted, quantum computation.
Published First observation of structures resulting from 3D domain swapping in antibody light chains



Antibodies hold promise as therapeutic agents. However, their tendency to aggregate poses significant challenges to drug development. In a groundbreaking study, researchers now provide novel insights into the structure formed due to 3D domain swapping of the antibody light chain, the part of the antibody contributing to antigen binding. Their findings are expected to lead to improvements in antibody quality and the development of novel drugs.
Published A fork in the 'rhod': Researchers unveil comprehensive collection of rhodamine-based fluorescent dyes



After more than a decade of developing fluorescent probes, a research team has now released the culmination of their years of work: A comprehensive collection of rhodamine-based dyes, the novel chemistry they developed to synthesize them and insights that provide a roadmap for designing future probes.
Published ChatGPT often won't defend its answers -- even when it is right



ChatGPT may do an impressive job at correctly answering complex questions, but a new study suggests it may be absurdly easy to convince the AI chatbot that it's in the wrong.
Published Magnetization by laser pulse



To magnetize an iron nail, one simply has to stroke its surface several times with a bar magnet. Yet, there is a much more unusual method: A team has discovered some time ago that a certain iron alloy can be magnetized with ultrashort laser pulses.
Published Polaritons open up a new lane on the semiconductor highway



On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today's most cutting-edge semiconductors, those phonons don't remove enough heat. That's why researchers are focused on opening a new nanoscale lane on the heat transfer highway by using hybrid quasiparticles called 'polaritons.'