Showing 20 articles starting at article 361
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Computer Science: General
Published Magnetization by laser pulse



To magnetize an iron nail, one simply has to stroke its surface several times with a bar magnet. Yet, there is a much more unusual method: A team has discovered some time ago that a certain iron alloy can be magnetized with ultrashort laser pulses.
Published Polaritons open up a new lane on the semiconductor highway



On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today's most cutting-edge semiconductors, those phonons don't remove enough heat. That's why researchers are focused on opening a new nanoscale lane on the heat transfer highway by using hybrid quasiparticles called 'polaritons.'
Published Diamonds and rust help unveil 'impossible' quasi-particles



Researchers have discovered magnetic monopoles -- isolated magnetic charges -- in a material closely related to rust, a result that could be used to power greener and faster computing technologies.
Published Boiled bubbles jump to carry more heat



The topic of water and the way it can move producing water droplets that leap -- propelled by surface tension -- and frost that jumps -- by way of electrostatics -- is a central focus of a group of scientists. Having incorporated the two phases of liquid and solid in the first two volumes of their research, their third volume investigates a third phase, with boiling water.
Published 2D material reshapes 3D electronics for AI hardware



Researchers demonstrated monolithic 3D integration of layered 2D material into novel processing hardware for artificial intelligence computing. The new approach provides a material-level solution for fully integrating many functions into a single, small electronic chip -- and paves the way for advanced AI computing.
Published Straining memory leads to new computing possibilities



A team of researchers developed a new form of computing memory that is fast, dense, and low-power by strategically straining materials that are as thin as a single layer of atoms.
Published Quantum tool opens door to uncharted phenomena



Scientists have developed a new tool for the measurement of entanglement in many-body systems and demonstrated it in experiments. The method enables the study of previously inaccessible physical phenomena and could contribute to a better understanding of quantum materials.
Published Researchers engineer a material that can perform different tasks depending on temperature



Researchers report that they have developed a new composite material designed to change behaviors depending on temperature in order to perform specific tasks. These materials are poised to be part of the next generation of autonomous robotics that will interact with the environment.
Published Nextgen computing: Hard-to-move quasiparticles glide up pyramid edges



A new kind of 'wire' for moving excitons could help enable a new class of devices, perhaps including room temperature quantum computers.
Published Unlocking the secrets of cells, with AI



Researchers have developed a new program that provides a more accurate understanding of the peptide sequences in cells. The researchers use machine learning to help analyze the makeup of unfamiliar cells, which could lead to more personalized medicine in the treatment of cancer and other serious diseases.
Published Defending your voice against deepfakes



Computer scientists have developed AntiFake, a tool to protect voice recordings from unauthorized speech synthesis.
Published Measuring long-term heart stress dynamics with smartwatch data



Biomedical engineers have developed a method using data from wearable devices such as smartwatches to digitally mimic an entire week's worth of an individual's heartbeats. The new 'digital twins' computational framework captures personalized arterial forces over 700,000 heartbeats to better predict risks of heart disease and heart attack. The advance is an important step toward evaluating the risks of heart disease or heart attack over months to years.
Published Promising salt for heat storage



Salt batteries can store summer heat to be used in winter, but which salt works best for the purpose?
Published Immersive engagement in mixed reality can be measured with reaction time



In the real world/digital world cross-over of mixed reality, a user's immersive engagement with the program is called presence. Now, researchers have identified reaction time as a potential presence measurement tool. Their findings have implications for calibrating mixed reality to the user in real time.
Published How heat can be used in computing



Physicists have demonstrated that, combining specific materials, heat in technical devices can be used in computing. Their discovery is based on extensive calculations and simulations. The new approach demonstrates how heat signals can be steered and amplified for use in energy-efficient data processing.
Published Hybrid transistors set stage for integration of biology and microelectronics



Researchers create transistors combining silicon with biological silk, using common microprocessor manufacturing methods. The silk protein can be easily modified with other chemical and biological molecules to change its properties, leading to circuits that respond to biology and the environment.
Published Medical AI tool gets human thumbs-up



A new artificial intelligence computer program can generate doctors' notes so well that two physicians couldn't tell the difference, according to an early study from both groups.
Published Toward sustainable energy applications with breakthrough in proton conductors



Donor doping into a mother material with disordered intrinsic oxygen vacancies, instead of the widely used strategy of acceptor doping into a material without oxygen vacancies, can greatly enhance the conductivity and stability of perovskite-type proton conductors at intermediate and low temperatures of 250--400 °C.
Published How we play together



Psychologists are using EEG to research what games reveal about our ability to cooperate.
Published New computer code for mechanics of tissues and cells in three dimensions



Biological materials are made of individual components, including tiny motors that convert fuel into motion. This creates patterns of movement, and the material shapes itself with coherent flows by constant consumption of energy. Such continuously driven materials are called 'active matter'. The mechanics of cells and tissues can be described by active matter theory, a scientific framework to understand shape, flows, and form of living materials. The active matter theory consists of many challenging mathematical equations. Scientists have now developed an algorithm, implemented in an open-source supercomputer code, that can for the first time solve the equations of active matter theory in realistic scenarios. These solutions bring us a big step closer to solving the century-old riddle of how cells and tissues attain their shape and to designing artificial biological machines.