Chemistry: Thermodynamics Energy: Technology
Published

New 'camera' with shutter speed of 1 trillionth of a second sees through dynamic disorder of atoms      (via sciencedaily.com) 

Researchers have developed a new 'camera' that sees the local disorder in materials. Its key feature is a variable shutter speed: because the disordered atomic clusters are moving, when the team used a slow shutter, the dynamic disorder blurred out, but when they used a fast shutter, they could see it. The method uses neutrons to measure atomic positions with a shutter speed of around one picosecond, a trillion times faster than normal camera shutters.

Computer Science: General
Published

Complex oxides could power the computers of the future      (via sciencedaily.com) 

Materials scientists describe in two papers how complex oxides can be used to create very energy-efficient magneto-electric spin-orbit (MESO) devices and memristive devices with reduced dimensions.

Biology: Botany Computer Science: General Ecology: General Ecology: Research Ecology: Trees Environmental: Ecosystems
Published

Phone-based measurements provide fast, accurate information about the health of forests      (via sciencedaily.com) 

Researchers have developed an algorithm that uses computer vision techniques to accurately measure trees almost five times faster than traditional, manual methods.

Computer Science: General
Published

Integrating humans with AI in structural design      (via sciencedaily.com) 

A new design process that uses generative design but also seeks feedback from humans is more effective at producing designs that are fully optimized for their purpose.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Physics: Optics
Published

Researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films      (via sciencedaily.com) 

Researchers have developed an inexpensive method for fabricating multi-walled carbon nanotubes (MWNTs) on a plastic film. The proposed method is simple, can be applied under ambient conditions, reuses MWNTs, and produces flexible wires of tunable resistances without requiring additional steps. It eliminates several drawbacks of current fabrication methods, making it useful for large-scale manufacturing of carbon wiring for flexible all-carbon devices.

Computer Science: Artificial Intelligence (AI) Computer Science: General Offbeat: Computers and Math
Published

Will future computers run on human brain cells?      (via sciencedaily.com) 

A 'biocomputer' powered by human brain cells could be developed within our lifetime, according to researchers who expect such technology to exponentially expand the capabilities of modern computing and create novel fields of study.

Chemistry: General Computer Science: General Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New material may offer key to solving quantum computing issue      (via sciencedaily.com) 

A new form of heterostructure of layered two-dimensional (2D) materials may enable quantum computing to overcome key barriers to its widespread application, according to an international team of researchers.

Chemistry: General Chemistry: Thermodynamics Energy: Technology
Published

New method creates material that could create the next generation of solar cells      (via sciencedaily.com) 

Perovskites, a family of materials with unique electric properties, show promise for use in a variety fields, including next-generation solar cells. A team of scientists has now created a new process to fabricate large perovskite devices that is more cost- and time-effective than previously possible and that they said may accelerate future materials discovery.

Computer Science: General Energy: Technology
Published

A new chip for decoding data transmissions demonstrates record-breaking energy efficiency      (via sciencedaily.com) 

A new chip called ORBGRAND can decode any code applied to data transmitted over the internet with maximum accuracy and between 10 and 100 times more energy efficiency than other methods.

Chemistry: Organic Chemistry Computer Science: General Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Theory can sort order from chaos in complex quantum systems      (via sciencedaily.com) 

Theoretical chemists have developed a theory that can predict the threshold at which quantum dynamics switches from 'orderly' to 'random,' as shown through research using large-scale computations on photosynthesis models.

Chemistry: Thermodynamics
Published

Neutrons reveal key to extraordinary heat transport      (via sciencedaily.com) 

Warming a crystal of the mineral fresnoite, scientists discovered that excitations called phasons carried heat three times farther and faster than phonons, the excitations that usually carry heat through a material.

Chemistry: Thermodynamics Physics: General Physics: Quantum Physics
Published

Physicists give the first law of thermodynamics a makeover      (via sciencedaily.com) 

Physicists at West Virginia University have made a breakthrough on an age-old limitation of the first law of thermodynamics.

Computer Science: General Energy: Batteries Energy: Technology
Published

New technology turns smartphones into RFID readers, saving costs and reducing waste      (via sciencedaily.com) 

Imagine you can open your fridge, open an app on your phone and immediately know which items are expiring within a few days. This is one of the applications that a new technology would enable.

Chemistry: Thermodynamics Energy: Technology Physics: Acoustics and Ultrasound
Published

Study offers details on using electric fields to tune thermal properties of ferroelectric materials      (via sciencedaily.com) 

New research sheds light on how electric fields can be used to alter the thermal properties of ferroelectric materials, allowing engineers to manipulate the flow of heat through the materials. Ferroelectric materials are used in a wide variety of applications, from ultrasound devices to memory storage technologies.

Computer Science: General Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Improving the performance of satellites in low Earth orbit      (via sciencedaily.com) 

On-chip distributed radiation sensors and current-sharing techniques can be used to reduce the impact of radiation on the radio and power consumption of small satellites, respectively. New findings can be used to make small satellites more robust, which can increase the connectivity of networks across the globe.

Computer Science: General Offbeat: Computers and Math Physics: Optics
Published

The switch made from a single molecule      (via sciencedaily.com) 

Researchers have demonstrated a switch, analogous to a transistor, made from a single molecule called fullerene. By using a carefully tuned laser pulse, the researchers are able to use fullerene to switch the path of an incoming electron in a predictable way. This switching process can be three to six orders of magnitude faster than switches in microchips, depending on the laser pulses used. Fullerene switches in a network could produce a computer beyond what is possible with electronic transistors, and they could also lead to unprecedented levels of resolution in microscopic imaging devices.

Chemistry: Thermodynamics
Published

Reactive fabrics respond to changes in temperature      (via sciencedaily.com) 

New textiles change shape when they heat up, giving designers a wide range of new options. In addition to offering adjustable aesthetics, responsive smart fabrics could also help monitor people’s health, improve thermal insulation, and provide new tools for managing room acoustics and interior design. 

Chemistry: Thermodynamics
Published

Solid-state thermal transistor demonstrated      (via sciencedaily.com) 

An effective, stable solid-state electrochemical transistor has been developed, heralding a new era in thermal management technology.

Chemistry: Thermodynamics Geoscience: Environmental Issues
Published

Add-on device makes home furnaces cleaner, safer and longer-lasting      (via sciencedaily.com) 

Natural gas furnaces not only heat your home, they also produce a lot of pollution. Even modern high-efficiency condensing furnaces produce significant amounts of corrosive acidic condensation and unhealthy levels of nitrogen oxides, carbon monoxide, hydrocarbons and methane. These emissions are typically vented into the atmosphere and end up polluting our soil, water and air. Scientists have developed an affordable add-on technology that removes more than 99.9% of acidic gases and other emissions to produce an ultraclean natural gas furnace. This acidic gas reduction, or AGR, technology can also be added to other natural gas-driven equipment such as water heaters, commercial boilers and industrial furnaces.