Showing 20 articles starting at article 241
< Previous 20 articles Next 20 articles >
Categories: Computer Science: General, Engineering: Nanotechnology
Published Computer game in school made students better at detecting fake news



A computer game helped upper secondary school students become better at distinguishing between reliable and misleading news.
Published Holographic displays offer a glimpse into an immersive future



Researchers have invented a new optical element that brings us one step closer to mixing the real and virtual worlds in an ordinary pair of eyeglasses using high-definition 3D holographic images.
Published Opening up the potential of thin-film electronics for flexible chip design



The mass production of conventional silicon chips relies on a successful business model with large 'semiconductor fabrication plants' or 'foundries'. New research by shows that this 'foundry' model can also be applied to the field of flexible, thin-film electronics.
Published This tiny chip can safeguard user data while enabling efficient computing on a smartphone



A new chip can efficiently accelerate machine-learning workloads on edge devices like smartphones while protecting sensitive user data from two common types of attacks -- side-channel attacks and bus-probing attacks.
Published Super Mario hackers' tricks could protect software from bugs



Video gamers who exploit glitches in games can help experts better understand buggy software, students suggest.
Published Laser-treated cork absorbs oil for carbon-neutral ocean cleanup



Researchers use laser treatments to transform ordinary cork into a powerful tool for treating oil spills. They tested variations of a fast-pulsing laser treatment, closely examining the nanoscopic structural changes and measuring the ratio of oxygen and carbon in the material, changes in the angles with which water and oil contact the surface, and the material's light wave absorption, reflection, and emission across the spectrum to determine its durability after multiple cycles of warming and cooling. The laser treatments not only help to better absorb oil, but also work to keep water out.
Published 2D materials rotate light polarization



Physicists have shown that ultra-thin two-dimensional materials such as tungsten diselenide can rotate the polarization of visible light by several degrees at certain wavelengths under small magnetic fields suitable for use on chips.
Published Magnetic with a pinch of hydrogen



Magnetic two-dimensional materials consisting of one or a few atomic layers have only recently become known and promise interesting applications, for example for the electronics of the future. So far, however, it has not been possible to control the magnetic states of these materials well enough. A research team is now presenting an innovative idea that could overcome this shortcoming -- by allowing the 2D layer to react with hydrogen.
Published Accelerating the discovery of new materials via the ion-exchange method



Researchers have unveiled a new means of predicting how to synthesize new materials via the ion-exchange. Based on computer simulations, the method significantly reduces the time and energy required to explore for inorganic materials.
Published Energy scientists unravel the mystery of gold's glow



EPFL researchers have developed the first comprehensive model of the quantum-mechanical effects behind photoluminescence in thin gold films; a discovery that could drive the development of solar fuels and batteries.
Published Teaching a computer to type like a human



A new typing model simulates the typing process instead of just predicting words.
Published Skyrmions move at record speeds: A step towards the computing of the future



Scientists have discovered that the magnetic nanobubbles known as skyrmions can be moved by electrical currents, attaining record speeds up to 900 m/s. Anticipated as future bits in computer memory, these nanobubbles offer enhanced avenues for information processing in electronic devices. Their tiny size provides great computing and information storage capacity, as well as low energy consumption. Until now, these nanobubbles moved no faster than 100 m/s, which is too slow for computing applications. However, thanks to the use of an antiferromagnetic material as medium, the scientists successfully had the skyrmions move 10 times faster than previously observed. These results offer new prospects for developing higher-performance and less energy-intensive computing devices.
Published Atom-by-atom: Imaging structural transformations in 2D materials



Silicon-based electronics are approaching their physical limitations and new materials are needed to keep up with current technological demands. Two-dimensional (2D) materials have a rich array of properties, including superconductivity and magnetism, and are promising candidates for use in electronic systems, such as transistors. However, precisely controlling the properties of these materials is extraordinarily difficult.
Published How 3D printers can give robots a soft touch



Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult to make. A recent study demonstrates that soft skin pads doubling as sensors made from thermoplastic urethane can be efficiently manufactured using 3D printers.
Published Two-dimensional nanomaterial sets record for expert-defying, counter-intuitive expansion



Engineers have developed a record-setting nanomaterial which when stretched in one direction, expands perpendicular to the applied force.
Published 'Nanostitches' enable lighter and tougher composite materials



In an approach they call 'nanostitching,' engineers used carbon nanotubes to prevent cracking in multilayered composites. The advance could lead to next-generation airplanes and spacecraft.
Published Trash to treasure -- researchers turn metal waste into catalyst for hydrogen



Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that could make hydrogen production more sustainable.
Published Cooler transformers could help electric grid



Simulations on the Stampede2 supercomputer of the Texas Advanced Computing Center (TACC) are helping scientists engineer solutions to overheating of grid transformers -- a critical component of the electric grid.
Published A single atom layer of gold: Researchers create goldene



For the first time, scientists have managed to create sheets of gold only a single atom layer thick. The material has been termed goldene. According to researchers, this has given the gold new properties that can make it suitable for use in applications such as carbon dioxide conversion, hydrogen production, and production of value-added chemicals.
Published Quantum electronics: Charge travels like light in bilayer graphene



An international research team has demonstrated experimentally that electrons in naturally occurring double-layer graphene move like particles without any mass, in the same way that light travels. Furthermore, they have shown that the current can be 'switched' on and off, which has potential for developing tiny, energy-efficient transistors -- like the light switch in your house but at a nanoscale.