Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Physics
Published

Bridging light and electrons      (via sciencedaily.com)     Original source 

Researchers have merged nonlinear optics with electron microscopy, unlocking new capabilities in material studies and the control of electron beams.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Catalytic combo converts CO2 to solid carbon nanofibers      (via sciencedaily.com)     Original source 

Scientists have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure and could successfully lock carbon away to offset or even achieve negative carbon emissions.

Computer Science: General Engineering: Graphene
Published

Transparent brain implant can read deep neural activity from the surface      (via sciencedaily.com)     Original source 

Researchers have developed a neural implant that provides information about activity deep inside the brain while sitting on its surface. The implant is made up of a thin, transparent and flexible polymer strip that is packed with a dense array of graphene electrodes. The technology, tested in transgenic mice, brings the researchers a step closer to building a minimally invasive brain-computer interface (BCI) that provides high-resolution data about deep neural activity by using recordings from the brain surface.

Computer Science: General Physics: General
Published

Revolutionizing real-time data processing with edge computing and reservoir technology      (via sciencedaily.com)     Original source 

Traditional cloud computing faces various challenges when processing large amounts of data in real time. 'Edge' computing is a promising alternative and can benefit from devices known as physical reservoirs. Researchers have now developed a novel memristor device for this purpose. It responds to electrical and optical signals and overcomes real-time processing limitations. When tested, it achieved up to 90.2% accuracy in digit identification, demonstrating its potential for applications in artificial intelligence systems and beyond.

Computer Science: General Offbeat: Computers and Math Offbeat: General
Published

New study pinpoints the weaknesses in AI      (via sciencedaily.com)     Original source 

ChatGPT and other solutions built on Machine Learning are surging. But even the most successful algorithms have limitations. Researchers have now proven mathematically that apart from simple problems it is not possible to create algorithms for AI that will always be stable. The study may lead to guidelines on how to better test algorithms and reminds us that machines do not have human intelligence after all.

Computer Science: General Offbeat: Computers and Math Offbeat: General
Published

Integrating dimensions to get more out of Moore's Law and advance electronics      (via sciencedaily.com)     Original source 

Engineers suggest a way to fit more transistors on a chip by seamlessly implementing 3D integration with 2D materials.

Computer Science: Artificial Intelligence (AI) Computer Science: General Mathematics: Modeling
Published

Researchers developing AI to make the internet more accessible      (via sciencedaily.com)     Original source 

In an effort to make the internet more accessible for people with disabilities, researchers have begun developing an artificial intelligence agent that could complete complex tasks on any website using simple language commands.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

How black silicon, a prized material used in solar cells, gets its dark, rough edge      (via sciencedaily.com)     Original source 

Researchers have developed a new theoretical model explaining one way to make black silicon. The new etching model precisely explains how fluorine gas breaks certain bonds in the silicon more often than others, depending on the orientation of the bond at the surface. Black silicon is an important material used in solar cells, light sensors, antibacterial surfaces and many other applications.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

The first domino falls for redox reactions      (via sciencedaily.com)     Original source 

Transmitting an effect known as a domino reaction using redox chemistry has been achieved for the first time.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New study uses machine learning to bridge the reality gap in quantum devices      (via sciencedaily.com)     Original source 

A study has used the power of machine learning to overcome a key challenge affecting quantum devices. For the first time, the findings reveal a way to close the 'reality gap': the difference between predicted and observed behavior from quantum devices.

Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

New soft robots roll like tires, spin like tops and orbit like moons      (via sciencedaily.com)     Original source 

Researchers have developed a new soft robot design that engages in three simultaneous behaviors: rolling forward, spinning like a record, and following a path that orbits around a central point. The device, which operates without human or computer control, holds promise for developing soft robotic devices that can be used to navigate and map unknown environments.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Geochemistry
Published

Bottled water can contain hundreds of thousands of previously uncounted tiny plastic bits      (via sciencedaily.com)     Original source 

In recent years, there has been rising concern that tiny particles known as microplastics are showing up basically everywhere on Earth, from polar ice to soil, drinking water and food. Formed when plastics break down into progressively smaller bits, these particles are being consumed by humans and other creatures, with unknown potential health and ecosystem effects. One big focus of research: bottled water, which has been shown to contain tens of thousands of identifiable fragments in each container. Now, using newly refined technology, researchers have entered a whole new plastic world: the poorly known realm of nanoplastics, the spawn of microplastics that have broken down even further. For the first time, they counted and identified these minute particles in bottled water. They found that on average, a liter contained some 240,000 detectable plastic fragments -- 10 to 100 times greater than previous estimates, which were based mainly on larger sizes.

Chemistry: Organic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Revolutionizing stable and efficient catalysts with Turing structures for hydrogen production      (via sciencedaily.com)     Original source 

Hydrogen energy has emerged as a promising alternative to fossil fuels, offering a clean and sustainable energy source. However, the development of low-cost and efficient catalysts for hydrogen evolution reaction remains a crucial challenge. Scientists have recently developed a novel strategy to engineer stable and efficient ultrathin nanosheet catalysts by forming Turing structures with multiple nanotwin crystals. This innovative discovery paves the way for enhanced catalyst performance for green hydrogen production.

Engineering: Nanotechnology
Published

Springs aboard -- gently feeling the way to grasp the microcosmos      (via sciencedaily.com)     Original source 

The integration of mechanical memory in the form of springs has for hundreds of years proven to be a key enabling technology for mechanical devices (like clocks), achieving advanced functionality through complex autonomous movements. In our times, the integration of springs in silicon-based microtechnology has opened the world of planar mass-producible mechatronic devices from which we all benefit, via air-bag sensors for example.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Functional semiconductor made from graphene      (via sciencedaily.com)     Original source 

Researchers have created the first functional semiconductor made from graphene, a single sheet of carbon atoms held together by the strongest bonds known. The breakthrough throws open the door to a new way of doing electronics.

Engineering: Nanotechnology Environmental: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers boost signal amplification in perovskite nanosheets      (via sciencedaily.com)     Original source 

Perovskite nanosheets show distinctive characteristics with significant applications in science and technology. In a recent study, researchers achieved enhanced signal amplification in CsPbBr3 perovskite nanosheets with a unique waveguide pattern, which enhanced both gain and thermal stability. These advancements carry wide-ranging implications for laser, sensor, and solar cell applications, and can potentially influence areas like environmental monitoring, industrial processes, and healthcare.

Chemistry: Biochemistry Engineering: Nanotechnology Offbeat: General
Published

Revolutionary nanodrones enable targeted cancer treatment      (via sciencedaily.com)     Original source 

A research team has unveiled a remarkable breakthrough in cancer treatment.

Computer Science: General Computer Science: Virtual Reality (VR)
Published

Wireless tracking system could help improve the XR experience      (via sciencedaily.com)     Original source 

Engineers developed a technology that delivers centimeter-level accuracy for real-time tracking in extended reality (XR) applications. It uses wireless signals to ensure precise asset localization and smooth tracking, promising to enhance virtual gaming experiences and workplace safety.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Computer Science: General Energy: Technology Physics: General Physics: Optics Physics: Quantum Physics
Published

Blue PHOLEDs: Final color of efficient OLEDs finally viable in lighting      (via sciencedaily.com)     Original source 

Lights could soon use the full color suite of perfectly efficient organic light-emitting diodes, or OLEDs, that last tens of thousands of hours. The new phosphorescent OLEDs, commonly referred to as PHOLEDs, can maintain 90% of the blue light intensity for 10-14 times longer than other designs that emit similar deep blue colors. That kind of lifespan could finally make blue PHOLEDs hardy enough to be commercially viable in lights that meet the Department of Energy's 50,000-hour lifetime target. Without a stable blue PHOLED, OLED lights need to use less-efficient technology to create white light.

Computer Science: General
Published

New brain-like transistor mimics human intelligence      (via sciencedaily.com)     Original source 

Researchers develop transistor that simultaneously processes and stores information like the human brain. Transistor goes beyond categorization tasks to perform associative learning. Transistor identified similar patterns, even when given imperfect input. Previous similar devices could only operate at cryogenic temperatures; new transistor operates at room temperature, making it more practical.