Showing 20 articles starting at article 481
< Previous 20 articles Next 20 articles >
Categories: Computer Science: General, Engineering: Nanotechnology
Published Bowtie resonators that build themselves bridge the gap between nanoscopic and macroscopic



Two nanotechnology approaches converge by employing a new generation of fabrication technology. It combines the scalability of semiconductor technology with the atomic dimensions enabled by self-assembly.
Published Diamonds and rust help unveil 'impossible' quasi-particles



Researchers have discovered magnetic monopoles -- isolated magnetic charges -- in a material closely related to rust, a result that could be used to power greener and faster computing technologies.
Published New implants linked to less infection and better recovery from orthopedic surgery



Superior knee and hip replacements are a step closer after researchers further test and develop a new orthopedic implant coating which has the strong ability to ward off infection -- as well as stimulate bone growth. The technology consists of novel Silver-Gallium (Ag-Ga) nano-amalgamated particles that can be easily applied to medical device surfaces.
Published Breakthroughs in nanosized contrast agents and drug carriers through self-folding molecules



Self-folding polymers containing gadolinium forming nanosized complexes could be the key to enhanced magnetic resonance imaging and next-generation drug delivery. Thanks to their small size, low toxicity, and good tumor accumulation and penetration, these complexes represent a leap forward in contrast agents for cancer diagnosis, as well as neutron capture radiotherapy.
Published Quantum physics: Superconducting Nanowires Detect Single Protein Ions



An international research team has achieved a breakthrough in the detection of protein ions: Due to their high energy sensitivity, superconducting nanowire detectors achieve almost 100% quantum efficiency and exceed the detection efficiency of conventional ion detectors at low energies by a factor of up to a 1,000. In contrast to conventional detectors, they can also distinguish macromolecules by their impact energy. This allows for more sensitive detection of proteins and it provides additional information in mass spectrometry.
Published Photonic chip that 'fits together like Lego' opens door to semiconductor industry



A new semiconductor architecture integrates traditional electronics with photonic, or light, components could have application in advanced radar, satellites, wireless networks and 6G telecommunications. And it provides a pathway for a local semiconductor industry.
Published Harvesting more solar energy with supercrystals



Hydrogen is a building block for the energy transition. To obtain it with the help of solar energy, researchers have developed new high-performance nanostructures. The material holds a world record for green hydrogen production with sunlight.
Published Control over friction, from small to large scales



Friction is hard to predict and control, especially since surfaces that come in contact are rarely perfectly flat. New experiments demonstrate that the amount of friction between two silicon surfaces, even at large scales, is determined by the forming and rupturing of microscopic chemical bonds between them. This makes it possible to control the amount of friction using surface chemistry techniques.
Published 2D material reshapes 3D electronics for AI hardware



Researchers demonstrated monolithic 3D integration of layered 2D material into novel processing hardware for artificial intelligence computing. The new approach provides a material-level solution for fully integrating many functions into a single, small electronic chip -- and paves the way for advanced AI computing.
Published Straining memory leads to new computing possibilities



A team of researchers developed a new form of computing memory that is fast, dense, and low-power by strategically straining materials that are as thin as a single layer of atoms.
Published Quantum tool opens door to uncharted phenomena



Scientists have developed a new tool for the measurement of entanglement in many-body systems and demonstrated it in experiments. The method enables the study of previously inaccessible physical phenomena and could contribute to a better understanding of quantum materials.
Published Researchers engineer a material that can perform different tasks depending on temperature



Researchers report that they have developed a new composite material designed to change behaviors depending on temperature in order to perform specific tasks. These materials are poised to be part of the next generation of autonomous robotics that will interact with the environment.
Published Nextgen computing: Hard-to-move quasiparticles glide up pyramid edges



A new kind of 'wire' for moving excitons could help enable a new class of devices, perhaps including room temperature quantum computers.
Published Unlocking the secrets of cells, with AI



Researchers have developed a new program that provides a more accurate understanding of the peptide sequences in cells. The researchers use machine learning to help analyze the makeup of unfamiliar cells, which could lead to more personalized medicine in the treatment of cancer and other serious diseases.
Published Defending your voice against deepfakes



Computer scientists have developed AntiFake, a tool to protect voice recordings from unauthorized speech synthesis.
Published Measuring long-term heart stress dynamics with smartwatch data



Biomedical engineers have developed a method using data from wearable devices such as smartwatches to digitally mimic an entire week's worth of an individual's heartbeats. The new 'digital twins' computational framework captures personalized arterial forces over 700,000 heartbeats to better predict risks of heart disease and heart attack. The advance is an important step toward evaluating the risks of heart disease or heart attack over months to years.
Published Immersive engagement in mixed reality can be measured with reaction time



In the real world/digital world cross-over of mixed reality, a user's immersive engagement with the program is called presence. Now, researchers have identified reaction time as a potential presence measurement tool. Their findings have implications for calibrating mixed reality to the user in real time.
Published How heat can be used in computing



Physicists have demonstrated that, combining specific materials, heat in technical devices can be used in computing. Their discovery is based on extensive calculations and simulations. The new approach demonstrates how heat signals can be steered and amplified for use in energy-efficient data processing.
Published Hybrid transistors set stage for integration of biology and microelectronics



Researchers create transistors combining silicon with biological silk, using common microprocessor manufacturing methods. The silk protein can be easily modified with other chemical and biological molecules to change its properties, leading to circuits that respond to biology and the environment.
Published Medical AI tool gets human thumbs-up



A new artificial intelligence computer program can generate doctors' notes so well that two physicians couldn't tell the difference, according to an early study from both groups.