Showing 20 articles starting at article 641
< Previous 20 articles Next 20 articles >
Categories: Computer Science: General, Engineering: Nanotechnology
Published Stabilizing precipitate growth at grain boundaries in alloys


Materials are often considered to be one phase, but many engineering materials contain two or more phases, improving their properties and performance. These two-phase materials have inclusions, called precipitates, embedded in the microstructure. Alloys, a combination of two or more types of metals, are used in many applications, like turbines for jet engines and light-weight alloys for automotive applications, because they have very good mechanical properties due to those embedded precipitates. The average precipitate size, however, tends to increase over time-in a process called coarsening-which results in a degradation of performance for microstructures with nanoscale precipitates.
Published Cleaning water with 'smart rust' and magnets


Pouring flecks of rust into water usually makes it dirtier. But researchers have developed special iron oxide nanoparticles called 'smart rust' that actually makes it cleaner. The magnetic nanoparticles attract different pollutants by changing the particles' coating and are removed from water with a magnet. Now, the team is reporting a smart rust that traps estrogen hormones, which are potentially harmful to aquatic life.
Published Magnonic computing: Faster spin waves could make novel computing systems possible


Research is underway around the world to find alternatives to our current electronic computing technology, as great, electron-based systems have limitations. A new way of transmitting information is emerging from the field of magnonics: instead of electron exchange, the waves generated in magnetic media could be used for transmission, but magnonics-based computing has been (too) slow to date. Scientists have now discovered a significant new method: When the intensity is increased, the spin waves become shorter and faster -- another step towards magnon computing.
Published Decoding how molecules 'talk' to each other to develop new nanotechnologies


Scientists recreate and compare molecular languages at the origin of life -- opening new doors for the development of novel nanotechnologies.
Published Carbon-based quantum technology


Graphene nanoribbons have outstanding properties that can be precisely controlled. Researchers have succeeded in attaching electrodes to individual atomically precise nanoribbons, paving the way for precise characterization of the fascinating ribbons and their possible use in quantum technology.
Published Gold buckyballs, oft-used nanoparticle 'seeds' are one and the same


Chemists have discovered that tiny gold 'seed' particles, a key ingredient in one of the most common nanoparticle recipes, are one and the same as gold buckyballs, 32-atom spheres that are cousins of the Nobel Prize-winning carbon buckyballs discovered in 1985.
Published Nanoscale material offers new way to control fire


High-temperature flames are used to create a wide variety of materials -- but once you start a fire, it can be difficult to control how the flame interacts with the material you are trying to process. Researchers have now developed a technique that utilizes a molecule-thin protective layer to control how the flame's heat interacts with the material -- taming the fire and allowing users to finely tune the characteristics of the processed material.
Published Scientists discover novel way of reading data in antiferromagnets, unlocking their use as computer memory



Scientists have made a significant advance in developing alternative materials for the high-speed memory chips that let computers access information quickly and that bypass the limitations of existing materials. They have discovered a way that allows them to make sense of previously hard-to-read data stored in these alternative materials, known as antiferromagnets.
Published Arrays of quantum rods could enhance TVs or virtual reality devices


Using scaffolds of folded DNA, engineers assembled arrays of quantum rods with desirable photonic properties that could enable them to be used as highly efficient micro-LEDs for televisions or virtual reality devices.
Published A roadmap to help AI technologies speak African languages


From text-generating ChatGPT to voice-activated Siri, artificial intelligence-powered tools are designed to aid our everyday life -- as long as you speak a language they support. These technologies are out of reach for billions of people who don't use English, French, Spanish or other mainstream languages, but researchers in Africa are looking to change that. Scientists now draw a roadmap to develop better AI-driven tools for African languages.
Published Tool finds bias in state-of-the-art generative AI model


Researchers introduce a new tool to measure bias in text-to-image AI generation models, which they have used to quantify bias in the state-of-the-art model Stable Diffusion.
Published Tattoo technique transfers gold nanopatterns onto live cells


For now, cyborgs exist only in fiction, but the concept is becoming more plausible as science progresses. And now, researchers are reporting that they have developed a proof-of-concept technique to 'tattoo' living cells and tissues with flexible arrays of gold nanodots and nanowires. With further refinement, this method could eventually be used to integrate smart devices with living tissue for biomedical applications, such as bionics and biosensing.
Published Quantum material exhibits 'non-local' behavior that mimics brain function


New research shows that electrical stimuli passed between neighboring electrodes can also affect non-neighboring electrodes. Known as non-locality, this discovery is a crucial milestone toward creating brain-like computers with minimal energy requirements.
Published Self-supervised AI learns physics to reconstruct microscopic images from holograms


Researchers have unveiled an artificial intelligence-based model for computational imaging and microscopy without training with experimental objects or real data. The team introduced a self-supervised AI model nicknamed GedankenNet that learns from physics laws and thought experiments. Informed only by the laws of physics that universally govern the propagation of electromagnetic waves in space, the researchers taught their AI model to reconstruct microscopic images using only random artificial holograms -- synthesized solely from 'imagination' without relying on any real-world experiments, actual sample resemblances or real data.
Published Discovery in nanomachines within living organisms -- cytochromes P450 (CYP450s) unleashed as living soft robots



A new study suggests that Cytochromes P450 (CYP450s) enzymes can sense and respond to stimuli, acting like soft robots in living systems.
Published AI transformation of medicine: Why doctors are not prepared


The success of artificial intelligence technologies depends largely on how physicians interpret and act upon a tool's risk predictions -- and that requires a unique set of skills that many are currently lacking, according to a new perspective article.
Published Modified virtual reality tech can measure brain activity


The research team at The University of Texas at Austin created a noninvasive electroencephalogram (EEG) sensor that they installed in a Meta VR headset that can be worn comfortably for long periods. The EEG measures the brain's electrical activity during the immersive VR interactions.
Published Single drop of ethanol to revolutionize nanosensor manufacture


Engineers have developed a breakthrough technique to make the processing of nanosensors cheaper, greener and more effective by using a single drop of ethanol to replace heat processing of nanoparticle networks, allowing a wider range of materials to be used to make these sensors.
Published Deep learning for new protein design


Deep learning methods have been used to augment existing energy-based physical models in 'do novo' or from-scratch computational protein design, resulting in a 10-fold increase in success rates verified in the lab for binding a designed protein with its target protein. The results will help scientists design better drugs against diseases like cancer and COVID-19.
Published Denial of service threats detected thanks to asymmetric behavior in network traffic


Scientists have developed a better way to recognize denial-of-service internet attacks, improving detection by 90 percent.