Showing 20 articles starting at article 161

< Previous 20 articles        Next 20 articles >

Categories: Computer Science: General, Physics: Quantum Physics

Return to the site home page

Physics: General Physics: Quantum Physics
Published

Theory and experiment combine to shine a new light on proton spin      (via sciencedaily.com)     Original source 

Nuclear physicists have long been working to reveal how the proton gets its spin. Now, a new method that combines experimental data with state-of-the-art calculations has revealed a more detailed picture of spin contributions from the very glue that holds protons together.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

More than spins: Exploring uncharted territory in quantum devices      (via sciencedaily.com)     Original source 

Many of today's quantum devices rely on collections of qubits, also called spins. These quantum bits have only two energy levels, the '0' and the '1'. However, spins in real devices also interact with light and vibrations known as bosons, greatly complicating calculations. Researchers now demonstrate a way to describe spin-boson systems and use this to efficiently configure quantum devices in a desired state.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

How a tiny device could lead to big physics discoveries and better lasers      (via sciencedaily.com)     Original source 

Researchers have fabricated a device no wider than a human hair that will help physicists investigate the fundamental nature of matter and light. Their findings could also support the development of more efficient lasers, which are used in fields ranging from medicine to manufacturing.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General Physics: Quantum Physics
Published

Shedding light on the chemical enigma of sulfur trioxide in the atmosphere      (via sciencedaily.com)     Original source 

Researchers discovered that sulfur trioxide can form products other than sulfuric acid in the atmosphere by interacting with organic and inorganic acids. These previously uncharacterized acid sulfuric anhydride products are almost certainly key contributors to atmospheric new particle formation and a way to efficiently incorporate carboxylic acids into atmospheric nanoparticles. Better prediction of aerosol formation can help curb air pollution and reduce uncertainties concerning climate change.

Physics: General Physics: Optics Physics: Quantum Physics
Published

New discoveries about the nature of light could improve methods for heating fusion plasma      (via sciencedaily.com)     Original source 

Scientists have made discoveries about light particles known as photons that could aid the quest for fusion energy.

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New crystal production method could enhance quantum computers and electronics      (via sciencedaily.com)     Original source 

Scientists describe a new method to make very thin crystals of the element bismuth -- a process that may aid the manufacturing of cheap flexible electronics an everyday reality.

Computer Science: General Computer Science: Quantum Computers Mathematics: Modeling
Published

How AI helps programming a quantum computer      (via sciencedaily.com)     Original source 

Researchers have unveiled a novel method to prepare quantum operations on a given quantum computer, using a machine learning generative model to find the appropriate sequence of quantum gates to execute a quantum operation. The study marks a significant step forward in unleashing the full extent of quantum computing.

Computer Science: General
Published

AI chips could get a sense of time      (via sciencedaily.com)     Original source 

Artificial neural networks may soon be able to process time-dependent information, such as audio and video data, more efficiently.

Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Enhancing superconductivity of graphene-calcium superconductors      (via sciencedaily.com)     Original source 

Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.

Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Engineering: Nanotechnology
Published

Blueprints of self-assembly      (via sciencedaily.com)     Original source 

Scientists have taken a step closer to replicating nature's processes of self-assembly. The study describes the synthetic construction of a tiny, self-assembled crystal known as a 'pyrochlore,' which bears unique optical properties. The advance provides a steppingstone to the eventual construction of sophisticated, self-assembling devices at the nanoscale -- roughly the size of a single virus.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General
Published

World's smallest quantum light detector on a silicon chip      (via sciencedaily.com)     Original source 

Researchers have made an important breakthrough in scaling quantum technology by integrating the world's tiniest quantum light detector onto a silicon chip.

Chemistry: Inorganic Chemistry Energy: Nuclear Energy: Technology Physics: General Physics: Optics Physics: Quantum Physics
Published

Magnetic imprint on deconfined nuclear matter      (via sciencedaily.com)     Original source 

Scientists have the first direct evidence that the powerful magnetic fields created in off-center collisions of atomic nuclei induce an electric current in 'deconfined' nuclear matter. The study used measurements of how charged particles are deflected when they emerge from the collisions. The study provides proof that the magnetic fields exist and offers a new way to measure electrical conductivity in quark-gluon plasma.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A simple quantum internet with significant possibilities      (via sciencedaily.com)     Original source 

It's one thing to dream up a quantum internet that could send hacker-proof information around the world via photons superimposed in different quantum states. It's quite another to physically show it's possible. That's exactly what physicists have done, using existing Boston-area telecommunication fiber, in a demonstration of the world's longest fiber distance between two quantum memory nodes to date.

Computer Science: General Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Offbeat: General
Published

Virtual reality becomes more engaging when designers use cinematic tools      (via sciencedaily.com)     Original source 

Cinematography techniques can significantly increase user engagement with virtual environments and, in particular, the aesthetic appeal of what users see in virtual reality.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists create an 'optical conveyor belt' for quasiparticles      (via sciencedaily.com)     Original source 

Using interference between two lasers, a research group has created an 'optical conveyor belt' that can move polaritons -- a type of light-matter hybrid particle -- in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.

Computer Science: General Mathematics: Statistics
Published

Artificial intelligence tool detects male-female-related differences in brain structure      (via sciencedaily.com)     Original source 

Artificial intelligence (AI) computer programs that process MRI results show differences in how the brains of men and women are organized at a cellular level, a new study shows. These variations were spotted in white matter, tissue primarily located in the human brain's innermost layer, which fosters communication between regions.

Chemistry: Thermodynamics Computer Science: General Physics: General
Published

Using artificial intelligence to speed up and improve the most computationally-intensive aspects of plasma physics in fusion      (via sciencedaily.com)     Original source 

Researchers are using artificial intelligence to perfect the design of the vessels surrounding the super-hot plasma, optimize heating methods and maintain stable control of the reaction for increasingly long periods. A new article explains how a researcher team used machine learning to avoid magnetic perturbations, or disruptions, which destabilize fusion plasma.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Speedy, secure, sustainable -- that's the future of telecom      (via sciencedaily.com)     Original source 

A new device that can process information using a small amount of light could enable energy-efficient and secure communications.

Computer Science: General
Published

Artificial intelligence tool to improve heart failure care      (via sciencedaily.com)     Original source 

The powerful new AI tool can predict heart failure outcomes in specific patients, helping doctors improve care.

Computer Science: General Offbeat: Computers and Math Offbeat: General
Published

Coming out to a chatbot?      (via sciencedaily.com)     Original source 

Today, there are dozens of large language model (LLM) chatbots aimed at mental health care -- addressing everything from loneliness among seniors to anxiety and depression in teens. But the efficacy of these apps is unclear. Even more unclear is how well these apps work in supporting specific, marginalized groups like LGBTQ+ communities.