Showing 20 articles starting at article 581
< Previous 20 articles Next 20 articles >
Categories: Computer Science: General, Space: Exploration
Published Defending your voice against deepfakes



Computer scientists have developed AntiFake, a tool to protect voice recordings from unauthorized speech synthesis.
Published Measuring long-term heart stress dynamics with smartwatch data



Biomedical engineers have developed a method using data from wearable devices such as smartwatches to digitally mimic an entire week's worth of an individual's heartbeats. The new 'digital twins' computational framework captures personalized arterial forces over 700,000 heartbeats to better predict risks of heart disease and heart attack. The advance is an important step toward evaluating the risks of heart disease or heart attack over months to years.
Published Immersive engagement in mixed reality can be measured with reaction time



In the real world/digital world cross-over of mixed reality, a user's immersive engagement with the program is called presence. Now, researchers have identified reaction time as a potential presence measurement tool. Their findings have implications for calibrating mixed reality to the user in real time.
Published How heat can be used in computing



Physicists have demonstrated that, combining specific materials, heat in technical devices can be used in computing. Their discovery is based on extensive calculations and simulations. The new approach demonstrates how heat signals can be steered and amplified for use in energy-efficient data processing.
Published New way of searching for dark matter



Wondering whether whether Dark Matter particles actually are produced inside a jet of standard model particles, led researchers to explore a new detector signature known as semi-visible jets, which scientists never looked at before.
Published Alien haze, cooked in a lab, clears view to distant water worlds



Scientists have simulated conditions that allow hazy skies to form in water-rich exoplanets, a crucial step in determining how haziness muddles important telescope observations for the search of habitable worlds beyond the solar system.
Published Telescope Array detects second highest-energy cosmic ray ever



In 1991, an experiment detected the highest-energy cosmic ray ever observed. Later dubbed the Oh-My-God particle, the cosmic ray’s energy shocked astrophysicists. Nothing in our galaxy had the power to produce it, and the particle had more energy than was theoretically possible for cosmic rays traveling to Earth from other galaxies. Simply put, the particle should not exist. On May 27, 2021, the Telescope Array experiment detected the second-highest extreme-energy cosmic ray. The newly dubbed Amaterasu particle deepens the mystery of the origin, propagation and particle physics of rare, ultra-high-energy cosmic rays.
Published Hybrid transistors set stage for integration of biology and microelectronics



Researchers create transistors combining silicon with biological silk, using common microprocessor manufacturing methods. The silk protein can be easily modified with other chemical and biological molecules to change its properties, leading to circuits that respond to biology and the environment.
Published NASA's Webb reveals new features in heart of Milky Way



The latest image from NASA's James Webb Space Telescope shows a portion of the dense center of our galaxy in unprecedented detail, including never-before-seen features astronomers have yet to explain. The star-forming region, named Sagittarius C (Sgr C), is about 300 light-years from the Milky Way's central supermassive black hole, Sagittarius A*.
Published Medical AI tool gets human thumbs-up



A new artificial intelligence computer program can generate doctors' notes so well that two physicians couldn't tell the difference, according to an early study from both groups.
Published How we play together



Psychologists are using EEG to research what games reveal about our ability to cooperate.
Published Hydrogen detected in lunar samples, points to resource availability for space exploration



Researchers have discovered solar-wind hydrogen in lunar samples, which indicates that water on the surface of the Moon may provide a vital resource for future lunar bases and longer-range space exploration.
Published Dwarf galaxies use 10-million-year quiet period to churn out stars



If you look at massive galaxies teeming with stars, you might be forgiven in thinking they are star factories, churning out brilliant balls of gas. But actually, less evolved dwarf galaxies have bigger regions of star factories, with higher rates of star formation. Now, University of Michigan researchers have discovered the reason underlying this: These galaxies enjoy a 10-million-year delay in blowing out the gas cluttering up their environments. Star-forming regions are able to hang on to their gas and dust, allowing more stars to coalesce and evolve. In these relatively pristine dwarf galaxies, massive stars--stars about 20 to 200 times the mass of our sun--collapse into black holes instead of exploding as supernovae. But in more evolved, polluted galaxies, like our Milky Way, they are more likely to explode, thereby generating a collective superwind. Gas and dust get blasted out of the galaxy, and star formation quickly stops.
Published 'Teenage galaxies' are unusually hot, glowing with unexpected elements



Using the James Webb Space Telescope, CECILIA Survey receives first data from galaxies forming two-to-three billion years after the Big Bang. By examining light from these 33 galaxies, researchers discovered their elemental composition and temperature. The ultra-deep spectrum revealed eight distinct elements: Hydrogen, helium, nitrogen, oxygen, silicon, sulfur, argon and nickel. The teenage galaxies also were extremely hot, reaching temperatures higher than 13,350 degrees Celsius.
Published New computer code for mechanics of tissues and cells in three dimensions



Biological materials are made of individual components, including tiny motors that convert fuel into motion. This creates patterns of movement, and the material shapes itself with coherent flows by constant consumption of energy. Such continuously driven materials are called 'active matter'. The mechanics of cells and tissues can be described by active matter theory, a scientific framework to understand shape, flows, and form of living materials. The active matter theory consists of many challenging mathematical equations. Scientists have now developed an algorithm, implemented in an open-source supercomputer code, that can for the first time solve the equations of active matter theory in realistic scenarios. These solutions bring us a big step closer to solving the century-old riddle of how cells and tissues attain their shape and to designing artificial biological machines.
Published Investigating the contribution of gamma-ray blazar flares to neutrino flux



Gamma-ray flares from blazars can be accompanied by high-energy neutrino emission. To better understand this phenomenon, an international research team has statistically analyzed 145 bright blazars. They constructed weekly binned light curves and utilized a Bayesian algorithm, finding that their sample was dominated by blazars with low flare duty cycles and energy fractions. The study suggests that high-energy neutrinos of blazars might be produced mainly during the flare phase.
Published Breakthrough in tackling increasing demand by 'internet of things' on mobile networks



A novel technology to manage demands on mobile networks from multiple users using Terahertz frequencies has been developed by computer scientists.
Published Future of brain-inspired AI as Python code library passes major milestone



An open source code library for brain-inspired deep learning, called 'snnTorch,' has surpassed 100,000 downloads and is used in a wide variety of projects. A new paper details the code and offers a perspective on the future of the field.
Published The mind's eye of a neural network system



A new tool, based on topology, makes finding the areas where neural networks are confused as simple as spotting mountaintops from an airplane. The ability to spot and address those areas of confusion should enable more confident application of neural networks in high-stakes decision scenarios or image prediction tasks like healthcare and research.
Published Nuclear expansion failure shows simulations require change



A team of researchers looked back at a model that predicted nuclear power would expand dramatically in order to assess the efficacy of energy policies implemented today.