Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Computer Science: General, Paleontology: Climate
Published Engineers make tunable, shape-changing metamaterial inspired by vintage toys



Common push puppet toys in the shapes of animals and popular figures can move or collapse with the push of a button at the bottom of the toys' base. Now, a team of engineers has created a new class of tunable dynamic material that mimics the inner workings of push puppets, with applications for soft robotics, reconfigurable architectures and space engineering.
Published New study unveils 16,000 years of climate history in the tropical Andes



Researchers highlight the roles of carbon dioxide and ocean currents as key drivers of temperature fluctuations in the tropical Andes over a 16,000 year period.
Published Wearable display tech: Full-color fiber LEDs based on perovskite quantum wires



A research team has developed full-color fiber light-emitting diodes utilizing perovskite quantum wires (PeQWs), paving the way for innovative wearable lighting and display devices.
Published Redefining the computer whiz: Research shows diverse skills valued by youth



Researchers have uncovered a more nuanced view of what makes an 'ideal' computer science student, challenging long-held stereotypes of geeky, clever, detail-oriented men, who lack social skills.
Published From doom-scrolling to mindfulness



Researchers have created Mindful Scroll, a mobile app that helps users transition from doom-scrolling to adding mindfulness into their daily routines.
Published Millions of years for plants to recover from global warming



Catastrophic volcanic eruptions that warmed the planet millions of years ago shed new light on how plants evolve and regulate climate. Researchers reveal the long-term effects of disturbed natural ecosystems on climate in geological history and its implications for today.
Published Record-breaking recovery of rocks that originated in Earth's mantle could reveal secrets of planet's history



Scientists have recovered the first long section of rocks that originated in the Earth's mantle, the layer below the crust and the planet's largest component. The rocks will help unravel the mantle's role in the origins of life on Earth, the volcanic activity generated when it melts, and how it drives the global cycles of important elements such as carbon and hydrogen.
Published Turning unused signals such as Wi-Fi into energy for electronics



We are constantly surrounded by electromagnetic waves such as Wi-Fi. Researchers tested a device to convert this ambient energy into energy for electronic devices.
Published Carvings at ancient monument may be world's oldest calendars



Markings on a stone pillar at a 12,000 year-old archaeological site in Turkey likely represent the world's oldest solar calendar, created as a memorial to a devastating comet strike, experts suggest.
Published Antarctic-wide survey of plant life to aid conservation efforts



The first continent-wide mapping study of plant life across Antarctica reveals growth in previously uncharted areas and is set to inform conservation measures across the region. The satellite survey of mosses, lichens and algae across the continent will form a baseline for monitoring how Antarctica's vegetation responds to climate change.
Published Greenland fossil discovery reveals increased risk of sea-level catastrophe



Seeds, twigs, and insect parts found under two miles of ice confirm Greenland's ice sheet melted in the recent past, the first direct evidence that the center -- not just the edges -- of the two-mile-deep ice melted away in the recent geological past. The new research indicates that the giant ice sheet is more fragile than scientists had realized until the last few years -- and reveals increased risk of sea-level catastrophe in a warmer future.
Published AI for mental health screening may carry biases based on gender, race



A growing body of AI tools screen how people talk, searching for subtle changes that could indicate mental health concerns like depression or anxiety. A study finds that these tools don't perform consistently across people from different genders and races.
Published How the rising earth in Antarctica will impact future sea level rise



The rising earth beneath the Antarctic Ice Sheet will likely become a major factor in future sea level rise, a new study suggests.
Published Pursuing the middle path to scientific discovery



Scientists have made significant strides in understanding the properties of a ferroelectric material under an electric field. This breakthrough holds potential for advances in computer memory, lasers and sensors for ultraprecise measurements.
Published Underwater mapping reveals new insights into melting of Antarctica's ice shelves



Clues to future sea level rise have been revealed by the first detailed maps of the underside of a floating ice shelf in Antarctica. An international research team deployed an unmanned submersible beneath the Dotson Ice Shelf in West Antarctica.
Published Bright prospects for engineering quantum light



Computers benefit greatly from being connected to the internet, so we might ask: What good is a quantum computer without a quantum internet?
Published Researchers develop general framework for designing quantum sensors



Researchers have designed a protocol for harnessing the power of quantum sensors. The protocol could give sensor designers the ability to fine-tune quantum systems to sense signals of interest, creating sensors that are vastly more sensitive than traditional sensors.
Published Robotics: Self-powered 'bugs' can skim across water to detect environmental data



Researchers have developed a self-powered 'bug' that can skim across the water, and they hope it will revolutionize aquatic robotics.
Published Optical fibers fit for the age of quantum computing



A new generation of specialty optical fibers has been developed by physicists to cope with the challenges of data transfer expected to arise in the future age of quantum computing.
Published AI method radically speeds predictions of materials' thermal properties



Researchers developed a machine-learning framework that can predict a key property of heat dispersion in materials that is up to 1,000 times faster than other AI methods, and could enable scientists to improve the efficiency of power generation systems and microelectronics.