Showing 20 articles starting at article 181
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Computer Science: Encryption
Published Scientists designed new enzyme using Antarctic bacteria and computer calculations


For the first time, researchers have succeeded in predicting how to change the optimum temperature of an enzyme using large computer calculations. A cold-adapted enzyme from an Antarctic bacterium was used as a basis.
Published Soft, ultrathin photonic material cools down wearable electronic devices



Overheating of wearable skin-like electronic devices increases the risk of skin burning and results in performance degradation. A research team has now invented a photonic material-based 'soft, ultrathin, radiative-cooling interface' that greatly enhances heat dissipation in devices, with temperature drops more than 56°C, offering an alternative for effective thermal management in advanced wearable electronics.
Published Evaluating cybersecurity methods



Researchers created a generic framework that enables an engineer or scientist to evaluate the effectiveness of defense schemes that seek to limit a hacker's ability to learn secret information by observing the behavior of a victim computer program.
Published Squid-inspired soft material is a switchable shield for light, heat, microwaves



With a flick of a switch, current technologies allow you to quickly change materials from being dark to light, or cold to hot, just by blocking or transmitting specific wavelengths. But now, inspired by squid skin, researchers report a soft film that can regulate its transparency across a large range of wavelengths -- visible, infrared and microwave -- simultaneously. They demonstrated the material in smart windows and in health monitoring and temperature management applications.
Published How secure are voice authentication systems really?



Computer scientists have discovered a method of attack that can successfully bypass voice authentication security systems with up to a 99% success rate after only six tries.
Published Inside-out heating and ambient wind could make direct air capture cheaper and more efficient



Chemical engineers use coated carbon fibers and eliminate steam-based heating in their simpler design, which also can be powered by wind energy.
Published Energy harvesting via vibrations: Researchers develop highly durable and efficient device



An international research group has engineered a new energy-generating device by combining piezoelectric composites with carbon fiber-reinforced polymer (CFRP), a commonly used material that is both light and strong. The new device transforms vibrations from the surrounding environment into electricity, providing an efficient and reliable means for self-powered sensors.
Published Sustainable technique to manufacture chemicals



A newly published study details a novel mechanochemistry method that can produce chemicals using less energy and without the use of solvents that produce toxic waste.
Published Scientists use seaweed to create new material that can store heat for reuse



Scientists have created a new material derived from seaweed that can store heat for re-use. It could be used to capture summer sun for use in winter, or to store heat from industry that currently goes up the chimney, potentially slashing carbon emissions. The material is in the form of small beads made from alginate, which is cheap, abundant and non-toxic. It stores heat four times more efficiently than a previous material the team had developed.
Published 'Heat highways' could keep electronics cool



As smart electronic devices become smaller and more powerful, they can generate a lot of heat, leading to slower processing times and sudden shutdowns. Now researchers use an electrospinning approach to produce a new nanocomposite film. In tests, the film dissipated heat four times more efficiently than similar materials, showing that it could one day be used to keep electronics cool.
Published Researchers finds a way to reduce the overheating of semiconductor devices



Scientists have identified a method for improving the thermal conductivity of thin metal films in semiconductors using surface waves for the first time in the world.
Published Thermal energy stored by land masses has increased significantly



There are many effects of climate change. Perhaps the most broadly known is global warming, which is caused by heat building up in various parts of the Earth system, such as the atmosphere, the ocean, the cryosphere and the land. 89 percent of this excess heat is stored in the oceans, with the rest in ice and glaciers, the atmosphere and land masses (including inland water bodies). An international research team has now studied the quantity of heat stored on land, showing the distribution of land heat among the continental ground, permafrost soils, and inland water bodies. The calculations show that more than 20 times as much heat has been stored there since the 1960s, with the largest increase being in the ground.
Published The next generation of solar energy collectors could be rocks



The next generation of sustainable energy technology might be built from some low-tech materials: rocks and the sun. Using a new approach known as concentrated solar power, heat from the sun is stored then used to dry foods or create electricity. A team has found that certain soapstone and granite samples from Tanzania are well suited for storing this solar heat, featuring high energy densities and stability even at high temperatures.
Published Quantum scientists accurately measure power levels one trillion times lower than usual



Scientists have developed a nanodevice that can measure the absolute power of microwave radiation down to the femtowatt level at ultra-low temperatures -- a scale trillion times lower than routinely used in verifiable power measurements. The device has the potential to significantly advance microwave measurements in quantum technology.
Published Sensors that operate at high temperatures and in extreme environments



Researchers have developed a new reliable and durable sensor that can work in temperatures as high as 900 degrees Celsius or 1,650 degrees Fahrenheit and can be used in multiple industries.
Published 'Improved' cookstoves emit more ultrafine particles than conventional stoves



Improved cookstoves, which are widely used for cooking in developing countries, produce twice as many harmful ultrafine air pollution particles (PM0.1) as conventional stoves, according to a new study.
Published New programmable smart fabric responds to temperature and electricity



A new smart material is activated by both heat and electricity, making it the first ever to respond to two different stimuli.
Published Even as temperatures rise, this hydrogel material keeps absorbing moisture



Engineers find the hydrogel polyethylene glycol (PEG) doubles its water absorption as temperatures climb from 25 to 50 C, and could be useful for passive cooling or water harvesting in warm climates.
Published Tiny biobattery with 100-year shelf life runs on bacteria



A tiny biobattery that could still work after 100 years has been developed.
Published Chemists propose ultrathin material for doubling solar cell efficiency



Researchers are studying radical new ways to improve solar power and provide more options for the industry to explore. Chemists are proposing to make solar cells using not silicon, but an abundantly available natural material called molybdenum disulfide. Using a creative combination of photoelectrochemical and spectroscopic techniques, the researchers conducted a series of experiments showing that extremely thin films of molybdenum disulfide display unprecedented charge carrier properties that could someday drastically improve solar technologies.