Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Encryption, Energy: Batteries
Published Innovative battery design: More energy and less environmental impact



A new electrolyte design for lithium metal batteries could significantly boost the range of electric vehicles. Researchers have radically reduced the amount of environmentally harmful fluorine required to stabilize these batteries.
Published A breakthrough in inexpensive, clean, fast-charging batteries



Scientists have created an anode-free sodium solid-state battery. This brings the reality of inexpensive, fast-charging, high-capacity batteries for electric vehicles and grid storage closer than ever.
Published Mechanical computer relies on kirigami cubes, not electronics



Researchers have developed a kirigami-inspired mechanical computer that uses a complex structure of rigid, interconnected polymer cubes to store, retrieve and erase data without relying on electronic components. The system also includes a reversible feature that allows users to control when data editing is permitted and when data should be locked in place.
Published Whoever controls electrolytes will pave the way for electric vehicles



Team develops a commercially viable and safe gel electrolyte for lithium batteries.
Published MXenes for energy storage



A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity.
Published A 'liquid battery' advance



A team aims to improve options for renewable energy storage through work on an emerging technology -- liquids for hydrogen storage.
Published Looking for a new battery platform? Focus on the essentials



In facing life's many challenges, we often opt for complex approaches to finding solutions. Yet, upon closer examination, the answers are often simpler than we expect, rooted in the core "essence" of the issue. This approach was demonstrated by a research team in their publication on addressing the inherent issues of solid-state batteries.
Published Electrified charcoal 'sponge' can soak up CO2 directly from the air



Researchers have developed a low-cost, energy-efficient method for making materials that can capture carbon dioxide directly from the air. Researchers used a method similar to charging a battery to instead charge activated charcoal, which is often used in household water filters.
Published Polymeric films protect anodes from sulfide solid electrolytes



Researchers unveil the interaction between polymeric materials and sulfide solid electrolytes.
Published 'The magic of making electricity from metals and air' The vexing carbonate has achieved it!



Team develops a high-energy, high-efficiency all-solid-state Na-air battery platform.
Published Renewable grid: Recovering electricity from heat storage hits 44% efficiency



Closing in on the theoretical maximum efficiency, devices for turning heat into electricity are edging closer to being practical for use on the grid, according to new research.
Published Iron could be key to less expensive, greener lithium-ion batteries, research finds



Chemistry researchers are hoping to spark a green battery revolution by showing that iron instead of cobalt and nickel can be used as a cathode material in lithium-ion batteries.
Published New milestone for lithium metal batteries



Scientists develop a porous structures for lithium metal batteries.
Published Batteries: Modeling tomorrow's materials today



Which factors determine how quickly a battery can be charged? Microstructural models have helped researchers discover and investigate new electrode materials. When sodium-nickel-manganese oxide is used as cathode material in sodium-ion batteries, simulations reveal modifications of the crystal structure during charging. These modifications lead to an elastic deformation, as a result of which capacity decreases.
Published Carbon-capture batteries developed to store renewable energy, help climate



Researchers are developing battery technologies to fight climate change in two ways, by expanding the use of renewable energy and capturing airborne carbon dioxide. Researchers recently created and tested two different formulations for batteries that store renewable energy; when the energy is later used, an electrochemical reaction converts industrial carbon dioxide emissions into a solid form that has the potential to be used in other products.
Published Making batteries takes a lot of lithium: Some could come from gas well wastewater



A new analysis suggests that if it could be extracted with complete efficiency, lithium from the wastewater of Marcellus shale gas wells could supply up to 40% of the country's demand.
Published Eco-friendly and affordable battery for low-income countries



A battery made from zinc and lignin that can be used over 8000 times. This has been developed with a vision to provide a cheap and sustainable battery solution for countries where access to electricity is limited.
Published Disorder improves battery life



What determines the cycle life of batteries? And, more importantly, how can we extend it? An international research team has discovered that local disorder in the oxide cathode material increases the number of times Li-ion batteries can be charged and discharged.
Published VR may pose privacy risks for kids: A new study finds parents aren't as worried as they should be



New research finds that, while an increasing number of minors are using virtual reality (VR) apps, not many parents recognize the extent of the security and privacy risks that are specific to VR technologies. The study also found that few parents are taking active steps to address those security and privacy issues, such as using parental controls built into the apps.
Published Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes



Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements.