Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Encryption, Engineering: Graphene
Published Lucky find! How science behind epidemics helped physicists to develop state-of-the-art conductive paint


Scientists demonstrate how a highly conductive paint coating that they have developed mimics the network spread of a virus through a process called 'explosive percolation' -- a mathematical process which can also be applied to population growth, financial systems and computer networks, but which has not been seen before in materials systems. The finding was a serendipitous development as well as a scientific first for the researchers.
Published A shield for 2D materials that adds vibrations to reduce vibration problems


A new study demonstrates a new, counterintuitive way to protect atomically-thin electronics -- adding vibrations, to reduce vibrations. By squeezing a liquid-metal gallium droplet, graphene devices are painted with a protective coating of gallium-oxide that can cover millimeter-wide scales, making it potentially applicable for industrial large-scale fabrication. The new technique improves device performance as well as protecting 2D materials from thermal vibration in neighboring materials.
Published Researchers propose methods for automatic detection of doxing


A new automated approach to detect doxing -- a form of cyberbullying in which certain private or personally identifiable information is publicly shared without an individual's consent or knowledge -- may help social media platforms better protect their users, according to researchers.
Published Nanomaterial influences gut microbiome and immune system interactions


The nanomaterial graphene oxide -- which is used in everything from electronics to sensors for biomolecules -- can indirectly affect the immune system via the gut microbiome, as shown in a new study on zebrafish.
Published New life flashed into lithium-ion anodes


Chemists use flash Joule heating to recover graphite anodes from spent lithium-ion batteries at a cost of about $118 per ton.
Published New way to produce important molecular entity


A team presents a new, direct way to produce unsymmetrically constructed vicinal diamines. These structures are relevant for the function of biologically active molecules, natural products and pharmaceuticals.
Published Palm e-tattoo can tell when you're stressed out


Researchers have applied emerging electronic tattoo (e-tattoo) technology to the tricky task of measuring stress levels by attaching a device to people's palms.
Published New carbon nanotube-based foam promises superior protection against concussions


A lightweight, ultra-shock-absorbing foam made from carbon nanotubes is so good at absorbing and dissipating the energy of an impact, it could vastly improve helmets and prevent concussions and other traumatic brain injuries.
Published Microlaser chip adds new dimensions to quantum communication


With only two levels of superposition, the qubits used in today's quantum communication technologies have limited storage space and low tolerance for interference. Engineering's hyperdimensional microlaser generates 'qudits,' photons with four simultaneous levels of information. The increase in dimension makes for robust quantum communication technology better suited for real-world applications.
Published Asphaltene changed into graphene for composites


The flash Joule heating process turns asphaltenes, a byproduct of crude oil production, into graphene for use in composite materials.
Published Researchers learn to engineer growth of crystalline materials consisting of nanometer-size gold clusters


First insights into engineering crystal growth by atomically precise metal nanoclusters have been achieved in a new study.
Published Growing pure nanotubes is a stretch, but possible


Researchers have published a new theory for making batches of carbon nanotubes with a single, desired chirality. Their method could simplify purification of nanotubes that are all metallic or all semiconductors.
Published New AI model can help prevent damaging and costly data breaches


Privacy experts have created an AI algorithm that automatically tests privacy-preserving systems for potential data leaks.
Published New study introduces the best graphite films


A recent study has proposed a strategy to synthesize single-crystalline graphite films orders of magnitude large, up to inch scale.
Published Discovery of a fundamental law of friction leads to new materials that can minimize energy loss


Chemists and engineers have discovered a fundamental friction law that is leading to a deeper understanding of energy dissipation in friction and the design of two-dimensional materials capable of minimizing energy loss.
Published In nanotube science, is boron nitride the new carbon?


Engineers synthesized aligned forests of nanoscale fibers made of boron nitride, or 'white graphene.' They hope to harness the technique to fabricate bulk-scale arrays of these nanotubes, which can then be combined with other materials to make stronger, more heat-resistant composites, for instance to shield space structures and hypersonic aircraft.
Published Trapping polaritons in an engineered quantum box


Researchers have engineered a quantum box for polaritons in a 2D material, achieving large polariton densities and a partially 'coherent' quantum state. New insights from the novel technique could allow researchers to access striking 'collective' quantum phenomena in this material family, and enable ultra-energy efficient and high-performance future technologies. Laying a 'small' 2D material on top of a 'large' layer allowed the researchers to trap and investigate polaritons, comparing them with freely moving polaritons.
Published Upgrading your computer to quantum


Researchers have demonstrated how a nanoscale layer of superconducting niobium nitride (NbNx) can be grown directly onto aluminum nitride (AIN). The arrangement of atoms, nitrogen content, and electrical conductivity were found to depend on growth conditions, particularly temperature, and the spacing of atoms in the two materials was sufficiently compatible to produce flat layers. The structural similarity between NbNx and AIN will facilitate the integration of superconductors into semiconductor optoelectronic devices.
Published Novel carrier doping in p-type semiconductors enhances photovoltaic device performance by increasing hole concentration


The carrier concentration and conductivity in p-type monovalent copper semiconductors can be significantly enhanced by adding alkali metal impurities. Doping with isovalent and larger-sized alkali metal ions effectively increased the free charge carrier concentration, and the mechanism was unraveled by their theoretical calculations. Their carrier doping technology enables high carrier concentration and high mobility p-type thin films to be prepared from the solution process, with photovoltaic device applications.
Published Making mini-magnets


Researchers demonstrated a topological insulator device that opens the way towards observing the quantum anomalous Hall effect. Because the currents generated are resistant to scattering, but very sensitive to applied magnetic fields, they may be used for reducing power consumption in computing applications.