Computer Science: Quantum Computers Energy: Technology Mathematics: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Manipulating the geometry of 'electron universe' in magnets      (via sciencedaily.com)     Original source 

Researchers have discovered a unique property, the quantum metric, within magnetic materials, altering the 'electron universe' geometry. This distinct electric signal challenges traditional electrical conduction and could revolutionize spintronic devices.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Perfecting the view on a crystal's imperfection      (via sciencedaily.com)     Original source 

Hexagonal boron nitride (hBN) has gained widespread attention and application across various quantum fields and technologies because it contains single-photon emmiters (SPEs), along with a layered structure that is easy to manipulation. The precise mechanisms governing the development and function of SPEs within hBN have remained elusive. Now, a new study reveals significant insights into the properties of hBN, offering a solution to discrepancies in previous research on the proposed origins of SPEs within the material.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Compact quantum light processing      (via sciencedaily.com)     Original source 

An international collaboration of researchers has achieved a significant breakthrough in quantum technology, with the successful demonstration of quantum interference among several single photons using a novel resource-efficient platform. The work represents a notable advancement in optical quantum computing that paves the way for more scalable quantum technologies.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Geoscience: Geochemistry Physics: General Physics: Optics Physics: Quantum Computing
Published

Energy scientists unravel the mystery of gold's glow      (via sciencedaily.com)     Original source 

EPFL researchers have developed the first comprehensive model of the quantum-mechanical effects behind photoluminescence in thin gold films; a discovery that could drive the development of solar fuels and batteries.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Crucial connection for 'quantum internet' made for the first time      (via sciencedaily.com)     Original source 

Researchers have produced, stored, and retrieved quantum information for the first time, a critical step in quantum networking.

Computer Science: Quantum Computers Energy: Technology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum precision: A new kind of resistor      (via sciencedaily.com)     Original source 

Researchers have developed a method that can improve the performance of quantum resistance standards. It's based on a quantum phenomenon called Quantum Anomalous Hall effect.

Computer Science: Encryption
Published

Clear guidelines needed for synthetic data to ensure transparency, accountability and fairness, study says      (via sciencedaily.com)     Original source 

Clear guidelines should be established for the generation and processing of synthetic data to ensure transparency, accountability and fairness, a new study says.

Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General
Published

Breakthrough promises secure quantum computing at home      (via sciencedaily.com)     Original source 

The full power of next-generation quantum computing could soon be harnessed by millions of individuals and companies, thanks to a breakthrough guaranteeing security and privacy. This advance promises to unlock the transformative potential of cloud-based quantum computing.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum breakthrough when light makes materials magnetic      (via sciencedaily.com)     Original source 

The potential of quantum technology is huge but is today largely limited to the extremely cold environments of laboratories. Now, researchers have succeeded in demonstrating for the very first time how laser light can induce quantum behavior at room temperature -- and make non-magnetic materials magnetic. The breakthrough is expected to pave the way for faster and more energy-efficient computers, information transfer and data storage.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New method of measuring qubits promises ease of scalability in a microscopic package      (via sciencedaily.com)     Original source 

The path to quantum supremacy is made challenging by the issues associated with scaling up the number of qubits. One key problem is the way that qubits are measured. A research group introduces a new approach that tackles these challenges head-on using nanobolometers instead of traditional, bulky parametric amplifiers.

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New technique lets scientists create resistance-free electron channels      (via sciencedaily.com)     Original source 

A team has taken the first atomic-resolution images and demonstrated electrical control of a chiral interface state -- an exotic quantum phenomenon that could help researchers advance quantum computing and energy-efficient electronics.

Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: Encryption Computer Science: General Physics: General
Published

Protecting art and passwords with biochemistry      (via sciencedaily.com)     Original source 

A new molecular test method helps to prove the authenticity of works of art. The new method could also help to make passwords secure against quantum computers.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: General Space: Structures and Features
Published

Chemical reactions can scramble quantum information as well as black holes      (via sciencedaily.com)     Original source 

A team of researchers has shown that molecules can be as formidable at scrambling quantum information as black holes by combining mathematical tools from black hole physics and chemical physics and testing their theory in chemical reactions.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Progress in quantum physics: Researchers tame superconductors      (via sciencedaily.com)     Original source 

An international team including researchers from the University of W rzburg has succeeded in creating a special state of superconductivity. This discovery could advance the development of quantum computers.

Energy: Nuclear Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers discover 'neutronic molecules'      (via sciencedaily.com)     Original source 

Researchers have discovered 'neutronic' molecules, in which neutrons can be made to cling to quantum dots, held just by the strong force. The finding may lead to new tools for probing material properties at the quantum level and exploring new kinds of quantum information processing devices.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers visualize quantum effects in electron waves      (via sciencedaily.com)     Original source 

One of the most fundamental interactions in physics is that of electrons and light. In an experiment, scientists have now managed to observe what is known as the Kapitza-Dirac effect for the first time in full temporal resolution. This effect was first postulated over 90 years ago, but only now are its finest details coming to light.

Chemistry: Thermodynamics Environmental: General Geoscience: Environmental Issues Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Sunrise to sunset, new window coating blocks heat -- not view      (via sciencedaily.com)     Original source 

Windows welcome light into interior spaces, but they also bring in unwanted heat. A new window coating blocks heat-generating ultraviolet and infrared light and lets through visible light, regardless of the sun's angle. The coating can be incorporated onto existing windows or automobiles and can reduce air-conditioning cooling costs by more than one-third in hot climates.

Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

100 kilometers of quantum-encrypted transfer      (via sciencedaily.com)     Original source 

Researchers have taken a big step towards securing information against hacking. They have succeeded in using quantum encryption to securely transfer information 100 kilometers via fiber optic cable -- roughly equivalent to the distance between Oxford and London.

Chemistry: Biochemistry Energy: Technology Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers discover dual topological phases in an intrinsic monolayer crystal      (via sciencedaily.com)     Original source 

An international team working with single-atom thick crystals found TaIrTe4's transition between the two distinct topological states of insulation and conduction. The material exhibited zero electrical conductivity within its interior, while its boundaries remain conductive. The team's investigation determined that the two topological states stem from disparate origins. The novel properties can serve as a promising platform for exploring exotic quantum phases and electromagnetism.