Showing 20 articles starting at article 601
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Computer Science: Artificial Intelligence (AI)
Published New research finds stress and strain changes metal electronic structure



New research shows that the electronic structure of metals can strongly affect their mechanical properties.
Published A superatomic semiconductor sets a speed record



The search is on for better semiconductors. A team of chemists describes the fastest and most efficient semiconductor yet: a superatomic material called Re6Se8Cl2.
Published Conduction electrons drive giant, nonlinear elastic response in Sr2RuO4



The hardness of a material normally is set by the strength of chemical bonds between electrons of neighboring atoms, not by freely flowing conduction electrons. Now a team of scientists has shown that current-carrying electrons can make the lattice much softer than usual in the material Sr2RuO4.
Published Engineers develop breakthrough 'robot skin'



Smart, stretchable and highly sensitive, a new soft sensor opens the door to a wide range of applications in robotics and prosthetics. When applied to the surface of a prosthetic arm or a robotic limb, the sensor skin provides touch sensitivity and dexterity, enabling tasks that can be difficult for machines such as picking up a piece of soft fruit. The sensor is also soft to the touch, like human skin, which helps make human interactions safer and more lifelike.
Published A potentially cheaper and 'cooler' way for hydrogen transport



Researchers have developed a new hydrogen energy carrier material capable storing hydrogen energy efficiently and potentially more cheaply. Each molecule can store one electron from hydrogen at room temperature, store it for up the three months, and can be its own catalyst to extract said electron. Moreover, as the compound is made primarily of nickel, its cost is relatively low.
Published Vision via sound for the blind



Smart glasses that use a technique similar to a bat's echolocation could help blind and low-vision people navigate their surroundings, according to researchers.
Published Can AI grasp related concepts after learning only one?



Researchers have now developed a technique that advances the ability of these tools, such as ChatGPT, to make compositional generalizations. This technique, Meta-learning for Compositionality, outperforms existing approaches and is on par with, and in some cases better than, human performance.
Published Achieving large and uniform particle sizes



Dispersions of polymer particles in a liquid phase (latexes) have many important applications in coatings technology, medical imaging, and cell biology. A team of researchers has now developed a method to produce stable polystyrene dispersions with unprecedentedly large, and uniform, particle sizes. Narrow size distributions are essential in many advanced technologies, but were previously difficult to produce photochemically.
Published Diapers can be recycled 200 times faster with light



More than 100,000 tons of diapers are disposed of annually in Germany. Vast amounts of valuable resources, such as diaper liners, end up in the trash. The liners consist of special polymers, so-called superabsorbers. Researchers have now succeeded in considerably improving their complex recycling process. They use UV radiation to degrade the chemical chains that keep the polymers together. No chemicals are needed. Recycling at room temperature is 200 times faster than conventional recycling. The recycled polymers can then be processed to new adhesives and dyes.
Published Scientists shed light on potential breakthrough biomedical molecule



Developing a new, light-activated method to produce the molecule opens doors for future biomedical applications.
Published Scientists develop new method to create stable, efficient next-gen solar cells



Next-generation solar materials are cheaper and more sustainable to produce than traditional silicon solar cells, but hurdles remain in making the devices durable enough to withstand real-world conditions. A new technique could simplify the development of efficient and stable perovskite solar cells, named for their unique crystalline structure that excels at absorbing visible light.
Published How quantum light 'sees' quantum sound



Researchers have proposed a new way of using quantum light to 'see' quantum sound. A new paper reveals the quantum-mechanical interplay between vibrations and particles of light, known as photons, in molecules. It is hoped that the discovery may help scientists better understand the interactions between light and matter on molecular scales. And it potentially paves the way for addressing fundamental questions about the importance of quantum effects in applications ranging from new quantum technologies to biological systems.
Published Cathode active materials for lithium-ion batteries could be produced at low temperatures



Layered lithium cobalt oxide, a key component of lithium-ion batteries, has been synthesized at temperatures as low as 300°C and durations as short as 30 minutes.
Published Researchers create the most water-repellent surface ever



A revised method to create hydrophobic surfaces has implications for any technology where water meets a solid surface, from optics and microfluidics to cooking.
Published Plant-based materials give 'life' to tiny soft robots



A team of researchers has created smart, advanced materials that will be the building blocks for a future generation of soft medical microrobots. These tiny robots have the potential to conduct medical procedures, such as biopsy, and cell and tissue transport, in a minimally invasive fashion.
Published Adaptive optical neural network connects thousands of artificial neurons



Physicists working with computer specialists have developed a so-called event-based architecture, using photonic processors. In a similar way to the brain, this makes possible the continuous adaptation of the connections within the neural network.
Published A step on the way to solid-state batteries



A lithium ceramic could act as a solid electrolyte in a more powerful and cost-efficient generation of rechargeable lithium-ion batteries. The challenge is to find a production method that works without sintering at high temperatures. A research team has now introduced a sinter-free method for the efficient, low-temperature synthesis of these ceramics in a conductive crystalline form.
Published Chemists, engineers craft adjustable arrays of microscopic lenses



A team has created minuscule lenses that it can expand or contract in mere seconds -- modifying their magnification, focal length and other optical properties in the process. That on-the-fly adaptability bodes well for the design's use in micro-projection systems and even the culturing of cells, the researchers said.
Published Electron-rich metals make ceramics tough to crack



Engineers have developed a recipe to make a certain class of ceramics tougher and more resistant to cracking. The newfound toughness of these ceramics paves the way for their use in extreme applications, such as spacecraft and other hypersonic vehicles.
Published Milestone: Miniature particle accelerator works



Particle accelerators are crucial tools in a wide variety of areas in industry, research and the medical sector. The space these machines require ranges from a few square meters to large research centers. Using lasers to accelerate electrons within a photonic nanostructure constitutes a microscopic alternative with the potential of generating significantly lower costs and making devices considerably less bulky. Until now, no substantial energy gains were demonstrated. In other words, it has not been shown that electrons really have increased in speed significantly. Two teams of laser physicists have just succeeded in demonstrating a nanophotonic electron accelerator.