Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Artificial Intelligence (AI), Engineering: Nanotechnology
Published Hair follicle models from the 3D printer



Hair follicle infections are often difficult to treat because bacteria settle in the gap between hair and skin, where it is difficult for active substances to reach them. In order to investigate this scenario more closely in the laboratory, researchers have now developed a model with human hair follicles embedded in a matrix produced using 3D printing. In the future, this model can be used to test the effectiveness of new drug candidates against corresponding pathogens directly on human follicles.
Published Scientists work to build 'wind-up' sensors



An international team of scientists has shown that twisted carbon nanotubes can store three times more energy per unit mass than advanced lithium-ion batteries. The finding may advance carbon nanotubes as a promising solution for storing energy in devices that need to be lightweight, compact, and safe, such as medical implants and sensors.
Published Generative AI pioneers the future of child language learning



Researchers create a storybook generation system for personalized vocabulary learning.
Published Researchers explore the interplay between high-affinity DNA and carbon nanotubes



Single-walled carbon nanotubes (SWCNTs) hold promise for biomedicine and nanoelectronics, yet the functionalization with single-stranded DNA (ssDNA) remains a challenge. Researchers using high-affinity ssDNA sequences identified through high-throughput selection. They demonstrated the effectivity and stability of these constructs using molecular dynamics simulations. Machine-learning models were used to accurately predict patterns that govern ssDNA-SWCNT binding affinity. These findings provide valuable insights into the interactions between ssDNA and SWCNTs.
Published Nanoscale device simultaneously steers and shifts frequency of optical light, pointing the way to future wireless communication channels



A tunable metasurface can control optical light in space and time, offering a path toward new ways of wirelessly and securely transmitting large amounts of data both on Earth and in space.
Published Researchers leveraging AI to train (robotic) dogs to respond to their masters



An international collaboration seeks to innovate the future of how a mechanical man's best friend interacts with its owner, using a combination of AI and edge computing called edge intelligence. The overarching project goal is to make the dog come 'alive' by adapting wearable-based sensing devices that can detect physiological and emotional stimuli inherent to one's personality and traits, such as introversions, or transient states, including pain and comfort levels.
Published New video test for Parkinson's uses AI to track how the disease is progressing



An automated assessment technique that uses artificial intelligence could revolutionize the management of Parkinson's disease.
Published Development of 'living robots' needs regulation and public debate



Researchers are calling for regulation to guide the responsible and ethical development of bio-hybrid robotics -- a ground-breaking science which fuses artificial components with living tissue and cells.
Published Researchers develop new method for achieving controllable tuning and assessing instability in 2D materials for engineering applications



Two-dimensional (2D) materials have atomic-level thickness and excellent mechanical and physical properties, with broad application prospects in fields such as semiconductors, flexible devices, and composite materials.
Published Shining light on amyloid architecture



Researchers use microscopy to chart amyloid beta's underlying structure and yield insight into neurodegenerative disease.
Published Can consciousness exist in a computer simulation?



A new essay explores which conditions must be met for consciousness to exist. At least one of them can't be found in a computer.
Published Ant insights lead to robot navigation breakthrough



Have you ever wondered how insects are able to go so far beyond their home and still find their way? The answer to this question is not only relevant to biology but also to making the AI for tiny, autonomous robots. Drone-researchers felt inspired by biological findings on how ants visually recognize their environment and combine it with counting their steps in order to get safely back home. They have used these insights to create an insect-inspired autonomous navigation strategy for tiny, lightweight robots. It allows such robots to come back home after long trajectories, while requiring extremely little computation and memory (0.65 kiloByte per 100 m). In the future, tiny autonomous robots could find a wide range of uses, from monitoring stock in warehouses to finding gas leaks in industrial sites.
Published New technique pinpoints nanoscale 'hot spots' in electronics to improve their longevity



Researchers engineered a new technique to identify at the nanoscale level what components are overheating in electronics and causing their performance to fail.
Published Chatbot Iris offers students individual support



Researchers have developed the chatbot Iris, which offers informatics students personalized assistance with programming assignments. A study has now confirmed the chatbot's success: Iris improves the understanding of programming concepts and represents a valuable complement to human tutors.
Published Enzyme-powered 'snot bots' help deliver drugs in sticky situations



Snot might not be the first place you'd expect nanobots to be swimming around. But this slimy secretion exists in more places than just your nose and piles of dirty tissues -- it also lines and helps protect the lungs, stomach, intestines and eyes. And now, researchers have demonstrated in mice that their tiny, enzyme-powered 'snot bots' can push through the defensive, sticky layer and potentially deliver drugs more efficiently.
Published Scientists develop new artificial intelligence method to create material 'fingerprints'



Researchers have developed a new technique that pairs artificial intelligence and X-ray science.
Published Metamaterials for the data highway



Researchers have been the first to demonstrate that not just individual bits, but entire bit sequences can be stored in cylindrical domains: tiny, cylindrical areas measuring just around 100 nanometers. As the team reports, these findings could pave the way for novel types of data storage and sensors, including even magnetic variants of neural networks.
Published Biodegradable electronics may advance with ability to control dissolve rate



Biodegradable electronics allow for medical devices -- such as drug delivery systems, pacemakers or neural implants -- to safely degrade into materials that are absorbed by the body after they are no longer needed. But if the water-soluble devices degrade too quickly, they cannot accomplish their purpose. Now, researchers have developed the ability to control the dissolve rate of these biodegradable electronics by experimenting with dissolvable elements, like inorganic fillers and polymers, that encapsulate the device.
Published AI found to boost individual creativity -- at the expense of less varied content



A new study finds that AI enhances creativity by boosting the novelty of story ideas as well as the 'usefulness' of stories -- their ability to engage the target audience and potential for publication. However, AI was not judged to enhance the work produced by more creative writers and the study also warns that while AI may enhance individual creativity it may also result in a loss of collective novelty, as AI-assisted stories were found to contain more similarities to each other and were less varied and diverse.
Published Microbeads with adaptable fluorescent colors from visible light to near-infrared



Researchers have successfully developed an environmentally friendly, microspherical fluorescent material primarily made from citric acid. These microbeads emit various colors of light depending on the illuminating light and the size of the beads, which suggests a wide range of applications. Furthermore, the use of plant-derived materials allows for low-cost and energy-efficient synthesis.