Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Late not great -- imperfect timekeeping places significant limit on quantum computers      (via sciencedaily.com)     Original source 

Quantum physicists show that imperfect timekeeping places a fundamental limit to quantum computers and their applications. The team claims that even tiny timing errors add up to place a significant impact on any large-scale algorithm, posing another problem that must eventually be solved if quantum computers are to fulfill the lofty aspirations that society has for them.

Computer Science: Artificial Intelligence (AI) Mathematics: Modeling
Published

The brain may learn about the world the same way some computational models do      (via sciencedaily.com)     Original source 

New studies support the idea that the brain uses a process similar to a machine-learning approach known as 'self-supervised learning.' This type of machine learning allows computational models to learn about visual scenes based solely on the similarities and differences between them, with no labels or other information.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Computer Science: Virtual Reality (VR) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Robot stand-in mimics movements in VR      (via sciencedaily.com)     Original source 

Researchers have developed a souped-up telepresence robot that responds automatically and in real-time to a remote user's movements and gestures made in virtual reality.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Controlling waves in magnets with superconductors for the first time      (via sciencedaily.com)     Original source 

Quantum physicists have shown that it's possible to control and manipulate spin waves on a chip using superconductors for the first time. These tiny waves in magnets may offer an alternative to electronics in the future, interesting for energy-efficient information technology or connecting pieces in a quantum computer, for example. The breakthrough primarily gives physicists new insight into the interaction between magnets and superconductors.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A superatomic semiconductor sets a speed record      (via sciencedaily.com)     Original source 

The search is on for better semiconductors. A team of chemists describes the fastest and most efficient semiconductor yet: a superatomic material called Re6Se8Cl2. 

Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Conduction electrons drive giant, nonlinear elastic response in Sr2RuO4      (via sciencedaily.com)     Original source 

The hardness of a material normally is set by the strength of chemical bonds between electrons of neighboring atoms, not by freely flowing conduction electrons. Now a team of scientists has shown that current-carrying electrons can make the lattice much softer than usual in the material Sr2RuO4.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Major milestone achieved in new quantum computing architecture      (via sciencedaily.com)     Original source 

Researchers report a significant advance in quantum computing. They have prolonged the coherence time of their single-electron qubit to an impressive 0.1 milliseconds, nearly a thousand-fold improvement.

Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Engineers develop breakthrough 'robot skin'      (via sciencedaily.com)     Original source 

Smart, stretchable and highly sensitive, a new soft sensor opens the door to a wide range of applications in robotics and prosthetics. When applied to the surface of a prosthetic arm or a robotic limb, the sensor skin provides touch sensitivity and dexterity, enabling tasks that can be difficult for machines such as picking up a piece of soft fruit. The sensor is also soft to the touch, like human skin, which helps make human interactions safer and more lifelike. 

Chemistry: Biochemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists simulate interacting quasiparticles in ultracold quantum gas      (via sciencedaily.com)     Original source 

In physics, quasiparticles are used to describe complex processes in solids. In ultracold quantum gases, these quasiparticles can be reproduced and studied. Now scientists have been able to observe in experiments how Fermi polarons -- a special type of quasiparticle -- can interact with each other.

Computer Science: Artificial Intelligence (AI) Computer Science: General
Published

Vision via sound for the blind      (via sciencedaily.com)     Original source 

Smart glasses that use a technique similar to a bat's echolocation could help blind and low-vision people navigate their surroundings, according to researchers. 

Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Using sound to test devices, control qubits      (via sciencedaily.com)     Original source 

Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material. 

Computer Science: Artificial Intelligence (AI)
Published

Can AI grasp related concepts after learning only one?      (via sciencedaily.com)     Original source 

Researchers have now developed a technique that advances the ability of these tools, such as ChatGPT, to make compositional generalizations. This technique, Meta-learning for Compositionality, outperforms existing approaches and is on par with, and in some cases better than, human performance.

Biology: Biochemistry Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Offbeat: General Offbeat: Plants and Animals Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

How quantum light 'sees' quantum sound      (via sciencedaily.com)     Original source 

Researchers have proposed a new way of using quantum light to 'see' quantum sound. A new paper reveals the quantum-mechanical interplay between vibrations and particles of light, known as photons, in molecules. It is hoped that the discovery may help scientists better understand the interactions between light and matter on molecular scales. And it potentially paves the way for addressing fundamental questions about the importance of quantum effects in applications ranging from new quantum technologies to biological systems.

Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Plant-based materials give 'life' to tiny soft robots      (via sciencedaily.com)     Original source 

A team of researchers has created smart, advanced materials that will be the building blocks for a future generation of soft medical microrobots. These tiny robots have the potential to conduct medical procedures, such as biopsy, and cell and tissue transport, in a minimally invasive fashion.

Computer Science: Artificial Intelligence (AI) Computer Science: General
Published

Adaptive optical neural network connects thousands of artificial neurons      (via sciencedaily.com)     Original source 

Physicists working with computer specialists have developed a so-called event-based architecture, using photonic processors. In a similar way to the brain, this makes possible the continuous adaptation of the connections within the neural network.

Chemistry: Biochemistry Engineering: Nanotechnology Physics: General Physics: Quantum Physics
Published

Unexpected behavior discovered in active particles      (via sciencedaily.com)     Original source 

Physicists have now shown that, depending on the extent to which the propulsion speed of active particles is dependent on their orientation, clusters in different shapes arise in many-particle systems. This might be a possible key to the realization of programmable matter.

Environmental: General Physics: General Physics: Optics Physics: Quantum Physics
Published

Accelerating waves shed light on major problems in physics      (via sciencedaily.com)     Original source 

Researchers at Tampere University and the University of Eastern Finland have reached a milestone in a study where they derived a new kind of wave equation, which applies for accelerating waves. The novel formalism has turned out to be an unexpectedly fertile ground for examining wave mechanics, with direct connections between accelerating waves, general theory of relativity, as well as the arrow of time.

Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers demonstrate a high-speed electrical readout method for graphene nanodevices      (via sciencedaily.com)     Original source 

Graphene is often referred to as a wonder material for its advantageous qualities. But its application in quantum computers, while promising, is stymied by the challenge of getting accurate measurements of quantum bit states with existing techniques. Now, researchers have developed design guidelines that enable radio-frequency reflectometry to achieve high-speed electrical readouts of graphene nanodevices. 

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Energy: Batteries Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A miniature magnetic resonance imager made of diamond      (via sciencedaily.com)     Original source 

The development of tumors begins with miniscule changes within the body's cells; ion diffusion at the smallest scales is decisive in the performance of batteries. Until now the resolution of conventional imaging methods has not been high enough to represent these processes in detail. A research team has now developed diamond quantum sensors which can be used to improve resolution in magnetic imaging.

Physics: General Physics: Optics Physics: Quantum Physics
Published

Scientists propose super-bright light sources powered by quasiparticles      (via sciencedaily.com)     Original source 

Researchers have proposed ways to use quasiparticles to create light sources as powerful as the most advanced ones in existence today, but much smaller.