Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Electrical control of quantum phenomenon could improve future electronic devices      (via sciencedaily.com)     Original source 

A new electrical method to conveniently change the direction of electron flow in some quantum materials could have implications for the development of next-generation electronic devices and quantum computers. A team of researchers has developed and demonstrated the method in materials that exhibit the quantum anomalous Hall (QAH) effect -- a phenomenon in which the flow of electrons along the edge of a material does not lose energy.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Physics
Published

Milestone: Miniature particle accelerator works      (via sciencedaily.com)     Original source 

Particle accelerators are crucial tools in a wide variety of areas in industry, research and the medical sector. The space these machines require ranges from a few square meters to large research centers. Using lasers to accelerate electrons within a photonic nanostructure constitutes a microscopic alternative with the potential of generating significantly lower costs and making devices considerably less bulky. Until now, no substantial energy gains were demonstrated. In other words, it has not been shown that electrons really have increased in speed significantly. Two teams of laser physicists have just succeeded in demonstrating a nanophotonic electron accelerator.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists create new form of antenna for radio waves      (via sciencedaily.com)     Original source 

Physicists have used a small glass bulb containing an atomic vapor to demonstrate a new form of antenna for radio waves. The bulb was 'wired up' with laser beams and could therefore be placed far from any receiver electronics.

Physics: General Physics: Optics Physics: Quantum Physics
Published

Photonic crystals bend light as though it were under the influence of gravity      (via sciencedaily.com)     Original source 

Scientists have theoretically predicted that light can be bent under pseudogravity. A recent study by researchers using photonic crystals has demonstrated this phenomenon. This breakthrough has significant implications for optics, materials science, and the development of 6G communications.  

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Simulations of 'backwards time travel' can improve scientific experiments      (via sciencedaily.com)     Original source 

Physicists have shown that simulating models of hypothetical time travel can solve experimental problems that appear impossible to solve using standard physics.

Physics: General Physics: Optics Physics: Quantum Physics
Published

Widely tuneable terahertz lasers boost photo-induced superconductivity in K3C60      (via sciencedaily.com)     Original source 

Researchers have long been exploring the effect of using tailored laser drives to manipulate the properties of quantum materials away from equilibrium. One of the most striking demonstrations of these physics has been in unconventional superconductors, where signatures of enhanced electronic coherences and super-transport have been documented in the resulting non-equilibrium states. However, these phenomena have not yet been systematically studied or optimized, primarily due to the complexity of the experiments. Technological applications are therefore still far removed from reality. In a recent experiment, this same group of researchers discovered a far more efficient way to create a previously observed metastable, superconducting-like state in K3C60 using laser light.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

New cyber algorithm shuts down malicious robotic attack      (via sciencedaily.com)     Original source 

Researchers have designed an algorithm that can intercept a man-in-the-middle (MitM) cyberattack on an unmanned military robot and shut it down in seconds. The algorithm, tested in real time, achieved a 99% success rate.

Chemistry: Biochemistry Engineering: Robotics Research Physics: General Physics: Quantum Physics
Published

Unifying matter, energy and consciousness      (via sciencedaily.com)     Original source 

Understanding the interplay between consciousness, energy and matter could bring important insights to our fundamental understanding of reality.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Ionic crystal generates molecular ions upon positron irradiation, finds new study      (via sciencedaily.com)     Original source 

The interaction between solid matter and positron (the antiparticle of electron) has provided important insights across a variety of disciplines, including atomic physics, materials science, elementary particle physics, and medicine. However, the experimental generation of positronic compounds by bombardment of positrons onto surfaces has proved challenging. In a new study, researchers detect molecular ion desorption from the surface of an ionic crystal when bombarded with positrons and propose a model based on positronic compound generation to explain their results.

Computer Science: Artificial Intelligence (AI) Mathematics: Modeling
Published

AI language models could help diagnose schizophrenia      (via sciencedaily.com)     Original source 

Scientists have developed new tools, based on AI language models, that can characterize subtle signatures in the speech of patients diagnosed with schizophrenia.

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Twisted science: New quantum ruler to explore exotic matter      (via sciencedaily.com)     Original source 

Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.   

Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Machine learning used to probe the building blocks of shapes      (via sciencedaily.com)     Original source 

Applying machine learning to find the properties of atomic pieces of geometry shows how AI has the power to accelerate discoveries in maths.

Biology: Cell Biology Biology: General Biology: Zoology Computer Science: Artificial Intelligence (AI) Computer Science: General Ecology: Nature Ecology: Research Mathematics: Modeling
Published

Birders and AI push bird conservation to the next level      (via sciencedaily.com)     Original source 

Big data and artificial intelligence (AI) are being used to model hidden patterns in nature, not just for one bird species, but for entire ecological communities across continents. And the models follow each species’ full annual life cycle, from breeding to fall migration to non-breeding grounds, and back north again during spring migration.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Could future AI crave a favorite food?      (via sciencedaily.com)     Original source 

Can artificial intelligence (AI) get hungry? Develop a taste for certain foods? Not yet, but a team of researchers is developing a novel electronic tongue that mimics how taste influences what we eat based on both needs and wants, providing a possible blueprint for AI that processes information more like a human being.

Biology: General Biology: Zoology Computer Science: Artificial Intelligence (AI) Energy: Technology Engineering: Robotics Research
Published

Insect cyborgs: Towards precision movement      (via sciencedaily.com)     Original source 

Insect cyborgs may sound like something straight out of the movies, but hybrid insect computer robots, as they are scientifically called, could pioneer a new future for robotics. It involves using electrical stimuli to control an insect’s movement. Now, an international research group has conducted a study on the relationship between electrical stimulation in stick insects' leg muscles and the resulting torque (the twisting force that causes the leg to move). 

Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Instant evolution: AI designs new robot from scratch in seconds      (via sciencedaily.com)     Original source 

Researchers developed the first AI to date that can intelligently design robots from scratch by compressing billions of years of evolution into mere seconds. It's not only fast but also runs on a lightweight computer and designs wholly novel structures from scratch — without human-labeled, bias-filled datasets.

Biology: Biochemistry Biology: Cell Biology Biology: Microbiology Computer Science: Artificial Intelligence (AI) Mathematics: General Mathematics: Modeling
Published

Sperm swimming is caused by the same patterns that are believed to dictate zebra stripes      (via sciencedaily.com)     Original source 

Patterns of chemical interactions are thought to create patterns in nature such as stripes and spots. This new study shows that the mathematical basis of these patterns also governs how sperm tail moves.

Offbeat: General Offbeat: Space Physics: General Physics: Quantum Physics Space: Astrophysics Space: Cosmology Space: General
Published

Down goes antimatter! Gravity's effect on matter's elusive twin is revealed      (via sciencedaily.com) 

For the first time, in a unique laboratory experiment at CERN, researchers have observed individual atoms of antihydrogen fall under the effects of gravity. In confirming antimatter and regular matter are gravitationally attracted, the finding rules out gravitational repulsion as the reason why antimatter is largely missing from the observable universe.