Engineering: Graphene Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists caught Hofstadter's butterfly in one of the most ancient materials on Earth      (via sciencedaily.com) 

Researchers have revisited one of the most ancient materials on Earth -- graphite, and discovered new physics that has eluded the field for decades.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math
Published

Researchers develop low-cost sensor to enhance robots' sense of touch      (via sciencedaily.com) 

Researchers have developed an L3 F-TOUCH sensor to enhance tactile capabilities in robots, allowing it to 'feel' objects and adjust its grip accordingly.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Mathematics: Modeling Offbeat: Computers and Math
Published

A simpler method for learning to control a robot      (via sciencedaily.com) 

A new machine-learning technique can efficiently learn to control a robot, leading to better performance with fewer data.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math
Published

Robotic hand rotates objects using touch, not vision      (via sciencedaily.com) 

Inspired by the effortless way humans handle objects without seeing them, engineers have developed a new approach that enables a robotic hand to rotate objects solely through touch, without relying on vision.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

A new type of quantum bit in semiconductor nanostructures      (via sciencedaily.com) 

Researchers have created a quantum superposition state in a semiconductor nanostructure that might serve as a basis for quantum computing. The trick: two optical laser pulses that act as a single terahertz laser pulse.

Energy: Technology Physics: Quantum Computing Physics: Quantum Physics
Published

'Quantum avalanche' explains how nonconductors turn into conductors      (via sciencedaily.com)     Original source 

The study takes a new approach to answer a long-standing mystery about insulator-to-metal transitions.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Robot preachers get less respect, fewer donations      (via sciencedaily.com) 

As artificial intelligence expands across more professions, robot preachers and AI programs offer new means of sharing religious beliefs, but they may undermine credibility and reduce donations for religious groups that rely on them.

Biology: Microbiology Engineering: Nanotechnology Physics: Quantum Computing Physics: Quantum Physics
Published

Detection of bacteria and viruses with fluorescent nanotubes      (via sciencedaily.com) 

The new carbon nanotube sensor design resembles a molecular toolbox that can be used to quickly assemble sensors for a variety of purposes -- for instance for detecting bacteria and viruses.

Computer Science: Artificial Intelligence (AI) Offbeat: Computers and Math
Published

Future AI algorithms have potential to learn like humans      (via sciencedaily.com) 

Memories can be as tricky to hold onto for machines as they can be for humans. To help understand why artificial agents develop holes in their own cognitive processes, electrical engineers have analyzed how much a process called 'continual learning' impacts their overall performance.

Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Unveiling the quantum dance: Experiments reveal nexus of vibrational and electronic dynamics      (via sciencedaily.com) 

Scientists have demonstrated experimentally a long-theorized relationship between electron and nuclear motion in molecules, which could lead to the design of materials for solar cells, electronic displays and other applications that can make use of this powerful quantum phenomenon.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Allowing robots to explore on their own      (via sciencedaily.com) 

Scientists have developed a suite of robotic systems and planners enabling robots to explore more quickly, probe the darkest corners of unknown environments, and create more accurate and detailed maps. The systems allow robots to do all this autonomously, finding their way and creating a map without human intervention.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math
Published

A faster way to teach a robot      (via sciencedaily.com) 

A new technique enables a human to efficiently fine-tune a robot that failed to complete a desired task with very little effort on the part of the human. Their system uses algorithms, counterfactual explanations, and feedback from the user to generate synthetic data it uses to quickly fine-tune the robot.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Bot inspired by baby turtles can swim under the sand      (via sciencedaily.com) 

This robot can swim under the sand and dig itself out too, thanks to two front limbs that mimic the oversized flippers of turtle hatchlings. It's the only robot that is able to travel in sand at a depth of 5 inches. It can also travel at a speed of 1.2 millimeters per second--roughly 4 meters, or 13 feet, per hour. This may seem slow but is comparable to other subterranean animals like worms and clams.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Robotics: New skin-like sensors fit almost everywhere      (via sciencedaily.com) 

Researchers have developed an automatic process for making soft sensors. These universal measurement cells can be attached to almost any kind of object. Applications are envisioned especially in robotics and prosthetics.

Physics: Quantum Computing Physics: Quantum Physics
Published

Theory for superfluid helium confirmed      (via sciencedaily.com) 

Researchers have achieved a groundbreaking milestone in studying how vortices move in these quantum fluids. A new study of vortex ring motion in superfluid helium provides crucial evidence supporting a recently developed theoretical model of quantized vortices.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers establish criterion for nonlocal quantum behavior in networks      (via sciencedaily.com) 

A new theoretical study provides a framework for understanding nonlocality, a feature that quantum networks must possess to perform operations inaccessible to standard communications technology. By clarifying the concept, researchers determined the conditions necessary to create systems with strong, quantum correlations.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

New superconductors can be built atom by atom      (via sciencedaily.com) 

The future of electronics will be based on novel kinds of materials. Sometimes, however, the naturally occurring topology of atoms makes it difficult for new physical effects to be created. To tackle this problem, researchers have now successfully designed superconductors one atom at a time, creating new states of matter.

Energy: Nuclear Offbeat: Space Physics: Quantum Physics Space: Astrophysics Space: Structures and Features
Published

Search for dark matter      (via sciencedaily.com)     Original source 

Scientists have applied a promising new method to search for dark matter particles in a particle accelerator. The method is based on the observation of the spin polarization of a particle beam in a storage ring COSY.

Physics: Quantum Computing Physics: Quantum Physics Space: Exploration Space: The Solar System
Published

Despite doubts from quantum physicists: Einstein's theory of relativity reaffirmed      (via sciencedaily.com)     Original source 

One of the most basic assumptions of fundamental physics is that the different properties of mass -- weight, inertia and gravitation -- always remain the same in relation to each other. Although all measurements to date confirm the equivalence principle, quantum theory postulates that there should be a violation. This inconsistency between Einstein's gravitational theory and modern quantum theory is the reason why ever more precise tests of the equivalence principle are particularly important. A team has now succeeded in proving with 100 times greater accuracy that passive and active gravitational mass are always equivalent -- regardless of the particular composition of the respective masses.

Computer Science: Quantum Computers Physics: Acoustics and Ultrasound Physics: Quantum Computing Physics: Quantum Physics
Published

Controlling signal routing in quantum information processing      (via sciencedaily.com)     Original source 

Routing signals and isolating them against noise and back-reflections are essential in many practical situations in classical communication as well as in quantum processing. In a theory-experimental collaboration, a team has achieved unidirectional transport of signals in pairs of 'one-way streets'. This research opens up new possibilities for more flexible signaling devices.