Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

The 'breath' between atoms -- a new building block for quantum technology      (via sciencedaily.com)     Original source 

Researchers have discovered they can detect atomic 'breathing,' or the mechanical vibration between two layers of atoms, by observing the type of light those atoms emitted when stimulated by a laser. The sound of this atomic 'breath' could help researchers encode and transmit quantum information.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

First X-ray of a single atom      (via sciencedaily.com)     Original source 

Scientists have taken the world's first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement could revolutionize the way scientists detect the materials.

Chemistry: Biochemistry Chemistry: General Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Physics
Published

A nanocrystal shines on and off indefinitely      (via sciencedaily.com)     Original source 

Optical probes have led to numerous breakthroughs in applications like optical memory, nanopatterning, and bioimaging, but existing options have limited lifespans and will eventually 'photobleach.' New work demonstrates a promising, longer-lasting alternative: ultra-photostable avalanching nanoparticles that can turn on and off indefinitely in response to near-infrared light from simple lasers.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Symmetry breaking by ultrashort light pulses opens new quantum pathways for coherent phonons      (via sciencedaily.com)     Original source 

Researchers have demonstrated a novel concept for exciting and probing coherent phonons in crystals of a transiently broken symmetry. The key of this concept lies in reducing the symmetry of a crystal by appropriate optical excitation, as has been shown with the prototypical crystalline semimetal bismuth (Bi).

Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Robotics Research Environmental: General Geoscience: Earth Science Offbeat: Computers and Math Offbeat: Earth and Climate Offbeat: General
Published

Robot centipedes go for a walk      (via sciencedaily.com)     Original source 

Researchers show how their multilegged walking robot can be steered by inducing a dynamic instability. By making the couplings between segments more flexible, the robot changes from walking straight to moving in a curved path. This work can lead to more energy-efficient and reliable robotic navigation of terrain.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Mathematics: Statistics Offbeat: Computers and Math Offbeat: General Physics: General
Published

Effective as a collective: Researchers investigate the swarming behavior of microrobots      (via sciencedaily.com)     Original source 

Miniaturization is progressing rapidly in just any field and the trend towards the creation of ever smaller units is also prevalent in the world of robot technology. In the future, minuscule robots used in medical and pharmaceutical applications might be able to transport medication to targeted sites in the body. Statistical physics can contribute to the foundations for the development of such technologies.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Physics
Published

'A blessing in disguise!' Physics turning bad into good      (via sciencedaily.com)     Original source 

Light is a very delicate and vulnerable property. Light can be absorbed or reflected at the surface of a material depending on the matter's properties or change its form and be converted into thermal energy. Upon reaching a metallic material's surface, light also tends to lose energy to the electrons inside the metal, a broad range of phenomena we call 'optical loss.' Production of ultra-small optical elements that utilize light in various ways is very difficult since the smaller the size of an optical component results in a greater optical loss. However, in recent years, the non-Hermitian theory, which uses optical loss in an entirely different way, has been applied to optics research.

Energy: Technology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Forging a dream material with semiconductor quantum dots      (via sciencedaily.com)     Original source 

Researchers have succeeded in creating a 'superlattice' of semiconductor quantum dots that can behave like a metal, potentially imparting exciting new properties to this popular class of materials.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Robots and Rights: Confucianism Offers Alternative      (via sciencedaily.com)     Original source 

As robots assume more roles in the world, a new analysis reviewed research on robot rights, concluding that granting rights to robots is a bad idea. Instead, the article looks to Confucianism to offer an alternative.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Snapshots of photoinjection      (via sciencedaily.com)     Original source 

Ultrafast laser physicists from the attoworld team have gained new insights into the dynamics of electrons in solids immediately after photoinjection.

Chemistry: Thermodynamics Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum scientists accurately measure power levels one trillion times lower than usual      (via sciencedaily.com)     Original source 

Scientists have developed a nanodevice that can measure the absolute power of microwave radiation down to the femtowatt level at ultra-low temperatures -- a scale trillion times lower than routinely used in verifiable power measurements. The device has the potential to significantly advance microwave measurements in quantum technology.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum matter breakthrough: Tuning density waves      (via sciencedaily.com)     Original source 

Scientists have found a new way to create a crystalline structure called a 'density wave' in an atomic gas. The findings can help us better understand the behavior of quantum matter, one of the most complex problems in physics.

Biology: Biochemistry Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General Offbeat: Plants and Animals
Published

Researchers build bee robot that can twist      (via sciencedaily.com)     Original source 

A robotic bee that can fly fully in all directions has been developed. With four wings made out of carbon fiber and mylar as well as four light-weight actuators to control each wing, the Bee++ prototype is the first to fly stably in all directions. That includes the tricky twisting motion known as yaw, with the Bee++ fully achieving the six degrees of free movement that a typical flying insect displays.

Chemistry: Biochemistry Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Uncovering universal physics in the dynamics of a quantum system      (via sciencedaily.com)     Original source 

New experiments using one-dimensional gases of ultra-cold atoms reveal a universality in how quantum systems composed of many particles change over time following a large influx of energy that throws the system out of equilibrium.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Mathematics: Modeling Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Curved spacetime in a quantum simulator      (via sciencedaily.com)     Original source 

The connection between quantum physics and the theory of relativity is extremely hard to study. But now, scientists have set up a model system, which can help: Quantum particles can be tuned in such a way that the results can be translated into information about other systems, which are much harder to observe. This kind of 'quantum simulator' works very well and can lead to new insights about the nature of relativity and quantum physics.

Computer Science: Artificial Intelligence (AI) Computer Science: General
Published

Can't find your phone? There's a robot for that      (via sciencedaily.com)     Original source 

Engineers have discovered a new way to program robots to help people with dementia locate medicine, glasses, phones and other objects they need but have lost.

Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Virtual Reality (VR)
Published

Better than humans: Artificial intelligence in intensive care units      (via sciencedaily.com)     Original source 

With the help of extensive data from intensive care units of various hospitals, an artificial intelligence was developed that provides suggestions for the treatment of people who require intensive care due to sepsis. Analyses show that artificial intelligence already surpasses the quality of human decisions. However, it is now important to also discuss the legal aspects of such methods.

Chemistry: Biochemistry Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

With new experimental method, researchers probe spin structure in 2D materials for first time      (via sciencedaily.com)     Original source 

In the study, a team of researchers describe what they believe to be the first measurement showing direct interaction between electrons spinning in a 2D material and photons coming from microwave radiation.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Computer Science: Virtual Reality (VR) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Robotic proxy brings remote users to life in real time      (via sciencedaily.com)     Original source 

Researchers have developed a robot, called ReMotion, that occupies physical space on a remote user's behalf, automatically mirroring the user's movements in real time and conveying key body language that is lost in standard virtual environments.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researcher uses artificial intelligence to discover new materials for advanced computing      (via sciencedaily.com)     Original source 

Researchers have identified novel van der Waals (vdW) magnets using cutting-edge tools in artificial intelligence (AI). In particular, the team identified transition metal halide vdW materials with large magnetic moments that are predicted to be chemically stable using semi-supervised learning. These two-dimensional (2D) vdW magnets have potential applications in data storage, spintronics, and even quantum computing.