Showing 20 articles starting at article 81
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Artificial Intelligence (AI), Physics: Optics
Published Nuclear spectroscopy breakthrough could rewrite the fundamental constants of nature



Raising the energy state of an atom's nucleus using a laser, or exciting it, would enable development of the most accurate atomic clocks ever to exist. This has been hard to do because electrons, which surround the nucleus, react easily with light, increasing the amount of light needed to reach the nucleus. By causing the electrons to bond with fluorine in a transparent crystal, UCLA physicists have finally succeeded in exciting the neutrons in a thorium atom's nucleus using a moderate amount of laser light. This accomplishment means that measurements of time, gravity and other fields that are currently performed using atomic electrons can be made with orders of magnitude higher accuracy.
Published Optoelectronics gain spin control from chiral perovskites and III-V semiconductors



A research effort has made advances that could enable a broader range of currently unimagined optoelectronic devices.
Published Light targets cells for death and triggers immune response with laser precision



A new method of precisely targeting troublesome cells for death using light could unlock new understanding of and treatments for cancer and inflammatory diseases.
Published New and improved camera inspired by the human eye



Computer scientists have invented a camera mechanism that improves how robots see and react to the world around them. Inspired by how the human eye works, their innovative camera system mimics the tiny involuntary movements used by the eye to maintain clear and stable vision over time.
Published 'World record' for data transmission speed



Researchers have sent data at a record rate of 402 terabits per second using commercially available optical fiber. This beats their previous record, announced in March 2024, of 301 terabits or 301,000,000 megabits per second using a single, standard optical fiber.
Published New computational microscopy technique provides more direct route to crisp images



A new computational microscopy technique solves for true high-resolution images without the guesswork that has limited the precision of other techniques.
Published Light-controlled artificial maple seeds could monitor the environment even in hard-to-reach locations



Researchers have developed a tiny robot replicating the aerial dance of falling maple seeds. In the future, this robot could be used for real-time environmental monitoring or delivery of small samples even in inaccessible terrain such as deserts, mountains or cliffs, or the open sea. This technology could be a game changer for fields such as search-and-rescue, endangered species studies, or infrastructure monitoring.
Published Common plastics could passively cool and heat buildings with the seasons



By restricting radiant heat flows between buildings and their environment to specific wavelengths, coatings engineered from common materials can achieve energy savings and thermal comfort that goes beyond what traditional building envelopes can achieve.
Published Solar technology: Innovative light-harvesting system works very efficiently



Researchers are reporting progress on the road to more efficient utilization of solar energy: They have developed an innovative light-harvesting system.
Published A chip-scale Titanium-sapphire laser



With a single leap from tabletop to the microscale, engineers have produced the world's first practical Titanium-sapphire laser on a chip, democratizing a once-exclusive technology.
Published A new study highlights potential of ultrafast laser processing for next-gen devices



A new study uncovers the remarkable potential of ultrafast lasers that could provide innovative solutions in 2D materials processing for many technology developers such as high-speed photodetectors, flexible electronics, biohybrids, and next-generation solar cells.
Published An optical lens that senses gas



A research team has developed a small optical lens, only a few millimeters in size, whose refractive behavior changes in the presence of gas. This 'intelligent' behavior of the micro-lens is enabled by the hybrid glass material from which it is made. The molecular structure of the lens consists of a three-dimensional lattice with cavities that can accommodate gas molecules, thereby affecting the optical properties of the material.
Published Light-weight microscope captures large-scale brain activity of mice on the move



With a new microscope that's as light as a penny, researchers can now observe broad swaths of the brain in action as mice move about and interact with their environments.
Published Researchers develop new training technique that aims to make AI systems less socially biased



Researchers have created a new, cost-effective training technique for artificial intelligence systems that aims to make them less socially biased.
Published Next platform for brain-inspired computing



Computers have come so far in terms of their power and potential, rivaling and even eclipsing human brains in their ability to store and crunch data, make predictions and communicate. But there is one domain where human brains continue to dominate: energy efficiency.
Published Moving objects precisely with sound



Researchers have succeeded in directing floating objects around an aquatic obstacle course using only soundwaves. Their novel, optics-inspired method holds great promise for biomedical applications such as noninvasive targeted drug delivery.
Published Robots face the future



Researchers have found a way to bind engineered skin tissue to the complex forms of humanoid robots. This brings with it potential benefits to robotic platforms such as increased mobility, self-healing abilities, embedded sensing capabilities and an increasingly lifelike appearance. Taking inspiration from human skin ligaments, the team included special perforations in a robot face, which helped a layer of skin take hold.
Published Meet CARMEN, a robot that helps people with mild cognitive impairment



Meet CARMEN, short for Cognitively Assistive Robot for Motivation and Neurorehabilitation -- a small, tabletop robot designed to help people with mild cognitive impairment (MCI) learn skills to improve memory, attention, and executive functioning at home.
Published Novel application of optical tweezers: Colorfully showing molecular energy transfer



Using a novel non-contact approach, a research team has successfully controlled the speed and efficiency of Forster resonance energy transfer between fluorescent molecules by varying the intensity of a laser beam.
Published Prying open the AI black box



Meet SQUID, a new computational tool. Compared with other genomic AI models, SQUID is more consistent, reduces background noise, and can yield better predictions regarding critical mutations. The new system aims to bring scientists closer to their findings' true medical implications.