Showing 20 articles starting at article 421
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Artificial Intelligence (AI), Geoscience: Earthquakes
Published Soft robot detects damage, heals itself


Engineers have created a soft robot capable of detecting when and where it was damaged -- and then healing itself on the spot.
Published Landslide risk remains years after even a weak earthquake


Satellite observations have revealed that weak seismic ground shaking can trigger powerful landslide acceleration -- even several years after a significant earthquake.
Published Earthquake lab experiments produce aftershock-like behavior


Earthquakes are notoriously hard to predict, and so too are the usually less-severe aftershocks that often follow a major seismic event.
Published Pulses driven by artificial intelligence tame quantum systems



Machine learning drives self-discovery of pulses that stabilize quantum systems in the face of environmental noise.
Published Making 'transport' robots smarter


Imagine a team of humans and robots working together to process online orders -- real-life workers strategically positioned among their automated coworkers who are moving intelligently back and forth in a warehouse space, picking items for shipping to the customer. This could become a reality sooner than later, thanks to researchers who are working to speed up the online delivery process by developing a software model designed to make 'transport' robots smarter.
Published A simpler path to better computer vision


Research finds using a large collection of simple, un-curated synthetic image generation programs to pretrain a computer vision model for image classification yields greater accuracy than employing other pretraining methods that are more costly and time consuming, and less scalable.
Published A far-sighted approach to machine learning


A new technique enables artificial intelligence agents to think much farther into the future when considering how their behaviors can influence the behaviors of other AI agents, toward the completion of a task. This approach improves long-term performance of cooperative or competitive AI agents.
Published Quantum algorithms save time in the calculation of electron dynamics


Quantum computers promise significantly shorter computing times for complex problems. But there are still only a few quantum computers worldwide with a limited number of so-called qubits. However, quantum computer algorithms can already run on conventional servers that simulate a quantum computer. A team has succeeded in calculating the electron orbitals and their dynamic development using an example of a small molecule after a laser pulse excitation. In principle, the method is also suitable for investigating larger molecules that cannot be calculated using conventional methods.
Published Self-organization: What robotics can learn from amoebae


Researchers have developed a new model to describe how biological or technical systems form complex structures without external guidance.
Published Exploring the deep: Drones offer new ways to monitor sea floor


Researchers have developed a novel method for measuring the earth's crust on the seafloor. A lightweight geodetic measurement device was mounted on a sea-surface landing unmanned aerial vehicle (UAV). The mobility of this new system will enable rapid, efficient collection of real-time deep seafloor information, which is critical for understanding earthquake risk, as well as various other oceanographic observations.
Published Monitoring 'frothy' magma gases could help evade disaster


Volcanic eruptions are dangerous and difficult to predict. A team has found that the ratio of atoms in specific gases released from volcanic fumaroles (gaps in the Earth's surface) can provide an indicator of what is happening to the magma deep below -- similar to taking a blood test to check your health. This can indicate when things might be 'heating up.' Specifically, changes in the ratio of argon-40 and helium-3 can indicate how frothy the magma is, which signals the risk of different types of eruption. Understanding which ratios of which gases indicate a certain type of magma activity is a big step. Next, the team hopes to develop portable equipment which can provide on-site, real-time measurements for a 24/7 volcanic activity monitoring and early warning system.
Published Artificial neural networks learn better when they spend time not learning at all



Researchers discuss how mimicking sleep patterns of the human brain in artificial neural networks may help mitigate the threat of catastrophic forgetting in the latter, boosting their utility across a spectrum of research interests.
Published 'Butterfly bot' is fastest swimming soft robot yet



Inspired by the biomechanics of the manta ray, researchers have developed an energy-efficient soft robot that can swim more than four times faster than previous swimming soft robots. The robots are called 'butterfly bots,' because their swimming motion resembles the way a person's arms move when they are swimming the butterfly stroke.
Published Using 1980s environmental modeling to mitigate future disasters: Could Japan's 3/11 disaster have been prevented?


On March 11, 2011, multiple catastrophes in Japan were triggered by the Great East Japan Earthquake, including the nuclear accident at the Fukushima Daiichi Nuclear Power Plant. This event, also known as the 3/11 disaster, is what is known as a compound disaster. Now that over a decade has passed since this event, researchers are investigating how to prevent the next compound disaster.
Published Report outlines plans for major research effort on subduction zone geologic hazards


Subduction zones, where one tectonic plate slides beneath another, produce the most devastating seismic, volcanic, and landslide hazards on the planet. A new report presents an ambitious plan to make major advances in understanding subduction zone hazards by bringing together a diverse community of scientists in a long-term collaborative effort, deploying new instrumentation in subduction zones, and developing more sophisticated and accurate models.
Published Water cutoff countermeasures using disaster emergency wells


Groundwater is considered both an environmental and industrial resource, but a new study indicates it is also an important resource in disaster prevention. Researchers conducted research surveys of 91 well owners and 328 welfare facilities affected by the 2016 Kumamoto Earthquake. The surveys clarified groundwater use following the earthquake and policy issues that could make the use of emergency wells more effective in the wake of future disasters. The surveys' findings provide useful data for city governments that have installed or are considering installing emergency wells.
Published Violent supershear earthquakes are more common than previously thought


About 14% of magnitude 6.7 or greater strike-slip earthquakes since 2000 have been supershear. That's 50% more than previously thought. Supershear earthquakes occur when a fault ruptures faster than seismic shear waves can travel through rock. The events were thought to be rare because scientists had mostly looked for them on land. The findings suggest that disaster planning assessments should include whether a fault is able to produce supershear quakes, which are potentially more destructive than other types.
Published Double trouble when 2 disasters strike electrical transmission infrastructure


One natural disaster can knock out electric service to millions. A new study suggests that back-to-back disasters could cause catastrophic damage, but the research also identifies new ways to monitor and maintain power grids.
Published Research reveals magma activity beneath Mount Edgecumbe


Magma beneath long-dormant Mount Edgecumbe volcano in Southeast Alaska has been moving upward through Earth's crust, according to research the Alaska Volcano Observatory rapidly produced using a new method.
Published Seismic sensing reveals flood damage potential


Rapidly evolving floods are a major and growing hazard worldwide. Currently, their onset and evolution is hard to identify using existing systems. However, seismic sensors already in place to detect earthquakes could be a solution to this problem. Researchers show that a seismometer can sense a flood, such as the devastating one that hit Germany in July 2021, up to 1.5 km away. This could act as an early warning to save lives and lessen damage. They also found that being able to measure the 'seismic footprint' of the flood provides information on its magnitude, velocity and trajectory in real time, which could be used for future flood protection.