Showing 20 articles starting at article 181
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Computer Science: Artificial Intelligence (AI)
Published MXenes for energy storage



A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity.
Published AI recognizes athletes' emotions



Using computer-assisted neural networks, researchers have been able to accurately identify affective states from the body language of tennis players during games. For the first time, they trained a model based on artificial intelligence (AI) with data from actual games. Their study demonstrates that AI can assess body language and emotions with accuracy similar to that of humans. However, it also points to ethical concerns.
Published Novel method for measuring nano/microplastic concentrations in soil using spectroscopy



Current techniques for measuring nano/microplastic (N/MP) concentrations in soil require the soil organic matter content to be separated and have limited resolution for analyzing N/MPs sized <1 m. Therefore, researchers have developed a novel yet simple method to measure N/MP concentration in different soil types using spectroscopy at two wavelengths. This method does not require the soil to be separated in order to detect the N/MPs and can accurately quantify N/MPs regardless of their size.
Published Golden ball mills as green catalysts



A gold-coated milling vessel for ball mills proved to be a real marvel: without any solvents or environmentally harmful chemicals, the team was able to use it to convert alcohols into aldehydes. The catalytic reaction takes place at the gold surface and is mechanically driven. The vessel can be reused multiple times. 'This opens up new prospects for the use of gold in catalysis and shows how traditional materials can contribute to solving modern environmental problems in an innovative way,' says Borchardt.
Published When bacteria are buckling



Filamentous cyanobacteria buckle at a certain length when they encounter an obstacle. The results provide an important basis for the use of cyanobacteria in modern biotechnology.
Published Reduction of esters by a novel photocatalyst



A ubiquitous compound, called ester can be broken down to produce desirable alcohols and other chemicals for use across industries including pharmaceuticals and cosmetics, but the process can be costly, both financially and in terms of the environment. Researchers developed a novel photocatalyst 'N-BAP.' When irradiated with blue light, the photocatalyst reduces esters in the presence of oxalate, a negatively charged molecule found widely in nature, resulting in the desired alcohols.
Published Researchers use large language models to help robots navigate



A technique can plan a trajectory for a robot using only language-based inputs. While it can't outperform vision-based approaches, it could be useful in settings that lack visual data to use for training.
Published Self-assembling and disassembling swarm molecular robots via DNA molecular controller



Researchers have succeeded in developing a DNA-based molecular controller. Crucially, this controller enables the autonomous assembly and disassembly of molecular robots, as opposed to manually directing it.
Published Concrete-nitrogen mix may provide major health and environment benefits



Adding nitrogen to concrete could significantly reduce the amount of greenhouse gases created by the construction industry.
Published New technique improves AI ability to map 3D space with 2D cameras



Researchers have developed a technique that allows artificial intelligence (AI) programs to better map three-dimensional spaces using two-dimensional images captured by multiple cameras. Because the technique works effectively with limited computational resources, it holds promise for improving the navigation of autonomous vehicles.
Published Nanosized blocks spontaneously assemble in water to create tiny floating checkerboards



Researchers have engineered nanosized cubes that spontaneously form a two-dimensional checkerboard pattern when dropped on the surface of water. The work presents a simple approach to create complex nanostructures through a technique called self-assembly.
Published Mobile monitoring for an airborne carcinogen in Louisiana's 'Cancer Alley'



Louisiana's southeastern corridor is sometimes known colloquially as 'Cancer Alley' for its high cancer incidence rates connected to industrial air pollution. Most of the region's air pollution-related health risks are attributed to ethylene oxide, a volatile compound used to make plastics and sterilize medical equipment. Researchers measured concerning levels of ethylene oxide in this area with mobile optical instruments, a technique they say could improve health risk assessments.
Published 'Synthetic' cell shown to follow chemical directions and change shape, a vital biological function



In a feat aimed at understanding how cells move and creating new ways to shuttle drugs through the body, scientists say they have built a minimal synthetic cell that follows an external chemical cue and demonstrates a governing principle of biology called 'symmetry breaking.'
Published A 'liquid battery' advance



A team aims to improve options for renewable energy storage through work on an emerging technology -- liquids for hydrogen storage.
Published Robot radiotherapy could improve treatments for eye disease



Researchers have successfully used a new robot system to improve treatment for debilitating eye disease.
Published Quantum dots and metasurfaces: Deep connections in the nano world



A team has developed printable, highly efficient light-emitting metasurfaces.
Published Towards a new era in flexible piezoelectric sensors for both humans and robots



Flexible piezoelectric sensors are essential to monitor the motions of both humans and humanoid robots. However, existing designs are either are costly or have limited sensitivity. In a recent study, researchers tackled these issues by developing a novel piezoelectric composite material made from electrospun polyvinylidene fluoride nanofibers combined with dopamine. Sensors made from this material showed significant performance and stability improvements at a low cost, promising advancements in medicine, healthcare, and robotics.
Published AI-powered simulation training improves human performance in robotic exoskeletons



Researchers have demonstrated a new method that leverages artificial intelligence (AI) and computer simulations to train robotic exoskeletons to autonomously help users save energy while walking, running and climbing stairs.
Published Female AI 'teammate' generates more participation from women



An artificial intelligence-powered virtual teammate with a female voice boosts participation and productivity among women on teams dominated by men, according to new research.
Published 3D-printed mini-actuators can move small soft robots, lock them into new shapes



Researchers have demonstrated miniature soft hydraulic actuators that can be used to control the deformation and motion of soft robots that are less than a millimeter thick. The researchers have also demonstrated that this technique works with shape memory materials, allowing users to repeatedly lock the soft robots into a desired shape and return to the original shape as needed.