Biology: Developmental Biology: Evolutionary Offbeat: Plants and Animals
Published

Bees and wasps use the same architectural solutions to join large hexagons to small hexagons      (via sciencedaily.com)     Original source 

Bees and wasps have converged on the same architectural solutions to nest-building problems, according to new research.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Mathematics: Modeling Offbeat: Computers and Math
Published

A simpler method for learning to control a robot      (via sciencedaily.com) 

A new machine-learning technique can efficiently learn to control a robot, leading to better performance with fewer data.

Biology: Developmental Ecology: Endangered Species Offbeat: Plants and Animals
Published

Fast electrical signals mapped in plants with new bioelectronic technology      (via sciencedaily.com)     Original source 

What happens inside the carnivorous plant Venus Flytrap when it catches an insect? New technology has led to discoveries about the electrical signalling that causes the trap to snap shut. Bioelectronic technology enables advanced research into how plants react to their surroundings, and to stress.

Offbeat: Plants and Animals
Published

Insect protein slows weight gain, boosts health status in obese mice      (via sciencedaily.com)     Original source 

A new study in mice suggests replacing traditional protein sources with mealworms in high-fat diets could slow weight gain, improve immune response, reduce inflammation, enhance energy metabolism, and beneficially alter the ratio of good to bad cholesterol.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math
Published

Robotic hand rotates objects using touch, not vision      (via sciencedaily.com) 

Inspired by the effortless way humans handle objects without seeing them, engineers have developed a new approach that enables a robotic hand to rotate objects solely through touch, without relying on vision.

Offbeat: Earth and Climate Offbeat: Plants and Animals
Published

Egg 'signatures' will allow drongos to identify cuckoo 'forgeries' almost every time, study finds      (via sciencedaily.com)     Original source 

Egg 'signatures' will allow drongos to identify cuckoo 'forgeries' almost every time, study finds. African cuckoos may have met their match with the fork-tailed drongo, which scientists predict can detect and reject cuckoo eggs from their nest on almost every occasion, despite them on average looking almost identical to drongo eggs.

Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Wormlike animals are first amphibians shown to pass microbes to their offspring      (via sciencedaily.com)     Original source 

Caecilians are an illusive type of snakelike amphibian that live in aquatic and subterranean environments. In some species, mothers produce a special type of nutrient-rich skin that juveniles consume, similar to the way in which humans breastfeed their children. A new study shows this behavior passes on microbes to juvenile caecilians, inoculating them to jump-start a healthy microbiome.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Robot preachers get less respect, fewer donations      (via sciencedaily.com) 

As artificial intelligence expands across more professions, robot preachers and AI programs offer new means of sharing religious beliefs, but they may undermine credibility and reduce donations for religious groups that rely on them.

Offbeat: Plants and Animals
Published

(How) cells talk to each other      (via sciencedaily.com)     Original source 

Like us, cells communicate. Well, in their own special way. Using waves as their common language, cells tell one another where and when to move. They talk, they share information, and they work together -- much like interdisciplinary teams. Researchers conducted research on how cells communicate -- and how that matters to future projects, e.g. application to wound healing.

Computer Science: Artificial Intelligence (AI) Offbeat: Computers and Math
Published

Future AI algorithms have potential to learn like humans      (via sciencedaily.com) 

Memories can be as tricky to hold onto for machines as they can be for humans. To help understand why artificial agents develop holes in their own cognitive processes, electrical engineers have analyzed how much a process called 'continual learning' impacts their overall performance.

Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Fossils Paleontology: General
Published

Paleontologists identify two new species of sabertooth cat      (via sciencedaily.com)     Original source 

Sabertooth cats make up a diverse group of long-toothed predators that roamed Africa around 6-7 million years ago, around the time that hominins -- the group that includes modern humans -- began to evolve. By examining one of the largest global Pliocene collections of fossils in Langebaanweg, north of Cape Town in South Africa, researchers present two new sabertooth species and the first family tree of the region's ancient sabertooths. Their results suggest that the distribution of sabertooths throughout ancient Africa might have been different than previously assumed, and the study provides important information about Africa's paleoenvironment.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Allowing robots to explore on their own      (via sciencedaily.com) 

Scientists have developed a suite of robotic systems and planners enabling robots to explore more quickly, probe the darkest corners of unknown environments, and create more accurate and detailed maps. The systems allow robots to do all this autonomously, finding their way and creating a map without human intervention.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math
Published

A faster way to teach a robot      (via sciencedaily.com) 

A new technique enables a human to efficiently fine-tune a robot that failed to complete a desired task with very little effort on the part of the human. Their system uses algorithms, counterfactual explanations, and feedback from the user to generate synthetic data it uses to quickly fine-tune the robot.

Biology: Microbiology Offbeat: Plants and Animals
Published

'Mind controlling' parasitic worms are missing genes found in every other animal      (via sciencedaily.com)     Original source 

Parasitic hairworms manipulate the behavior of their hosts in what's sometimes called 'mind control.' A new study reveals another strange trait shared by different hairworm species: they're missing about 30% of the genes that researchers expected them to have. What's more, the missing genes are responsible for the development of cilia, the hair-like structures present in at least some of the cells of every other animal known.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Bot inspired by baby turtles can swim under the sand      (via sciencedaily.com) 

This robot can swim under the sand and dig itself out too, thanks to two front limbs that mimic the oversized flippers of turtle hatchlings. It's the only robot that is able to travel in sand at a depth of 5 inches. It can also travel at a speed of 1.2 millimeters per second--roughly 4 meters, or 13 feet, per hour. This may seem slow but is comparable to other subterranean animals like worms and clams.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Robotics: New skin-like sensors fit almost everywhere      (via sciencedaily.com) 

Researchers have developed an automatic process for making soft sensors. These universal measurement cells can be attached to almost any kind of object. Applications are envisioned especially in robotics and prosthetics.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Space: Exploration
Published

Robot team on lunar exploration tour      (via sciencedaily.com)     Original source 

Engineers are training legged robots for future lunar missions that will search for minerals and raw materials. To ensure that the robots can continue to work even if one of them malfunctions, the researchers are teaching them teamwork.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math
Published

Pump powers soft robots, makes cocktails      (via sciencedaily.com) 

Over the past several years, researchers have been developing soft analogues of traditionally rigid robotic components. In fluid-driven robotic systems, pumps control the pressure or flow of the liquid that powers the robot's movement. Most pumps available today for soft robotics are either too large and rigid to fit onboard, not powerful enough for actuation or only work with specific fluids. Researchers have now developed a compact, soft pump with adjustable pressure flow versatile enough to pump a variety of fluids with varying viscosity, including gin, juice, and coconut milk, and powerful enough to power soft haptic devices and a soft robotic finger.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: Space Space: Exploration Space: The Solar System
Published

Training robots how to learn, make decisions on the fly      (via sciencedaily.com)     Original source 

Mars rovers have teams of human experts on Earth telling them what to do. But robots on lander missions to moons orbiting Saturn or Jupiter are too far away to receive timely commands from Earth. Researchers developed a novel learning-based method so robots on extraterrestrial bodies can make decisions on their own about where and how to scoop up terrain samples.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math
Published

Revolutionary self-sensing electric artificial muscles      (via sciencedaily.com) 

Researchers have made groundbreaking advancements in bionics with the development of a new electric variable-stiffness artificial muscle. This innovative technology possesses self-sensing capabilities and has the potential to revolutionize soft robotics and medical applications. The artificial muscle seamlessly transitions between soft and hard states, while also sensing forces and deformations. With flexibility and stretchability similar to natural muscle, it can be integrated into intricate soft robotic systems and adapt to various shapes. By adjusting voltages, the muscle rapidly changes its stiffness and can monitor its own deformation through resistance changes. The fabrication process is simple and reliable, making it ideal for a range of applications, including aiding individuals with disabilities or patients in rehabilitation training.