Showing 20 articles starting at article 81
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Virtual Reality (VR), Space: General
Published Tiny bright objects discovered at dawn of universe baffle scientists



A recent discovery by NASA's James Webb Space Telescope (JWST) confirmed that luminous, very red objects previously detected in the early universe upend conventional thinking about the origins and evolution of galaxies and their supermassive black holes.
Published Soft, stretchy electrode simulates touch sensations using electrical signals



A team of researchers has developed a soft, stretchy electronic device capable of simulating the feeling of pressure or vibration when worn on the skin. This device represents a step towards creating haptic technologies that can reproduce a more varied and realistic range of touch sensations for applications such as virtual reality, medical prosthetics and wearable technology.
Published Too many missing satellite galaxies found



Bringing us one step closer to solving the 'missing satellites problem,' researchers have discovered two new satellite galaxies.
Published New class of Mars quakes reveals daily meteorite strikes



An international team of researchers combine orbital imagery with seismological data from NASA's Mars InSight lander to derive a new impact rate for meteorite strikes on Mars. Seismology also offers a new tool for determining the density of Mars' craters and the age of different regions of a planet.
Published The density difference of sub-Neptunes finally deciphered



The majority of stars in our galaxy are home to planets. The most abundant are the sub-Neptunes, planets between the size of Earth and Neptune. Calculating their density poses a problem for scientists: depending on the method used to measure their mass, two populations are highlighted, the dense and the less dense. Is this due to an observational bias or the physical existence of two distinct populations of sub-Neptunes? Recent work argues for the latter.
Published Precision instrument bolsters efforts to find elusive dark energy



Dark energy -- a mysterious force pushing the universe apart at an ever-increasing rate -- was discovered 26 years ago, and ever since, scientists have been searching for a new and exotic particle causing the expansion. Physicists combined an optical lattice with an atom interferometer to hold atoms in place for up to 70 seconds -- a record for an atom interferometer -- allowing them to more precisely test for deviations from the accepted theory of gravity that could be caused by dark energy particles such as chameleons or symmetrons. Though they detected no anomalies, they're improving the experiment to perform more sensitive tests of gravity, including whether gravity is quantized.
Published Shocked quartz reveals evidence of historical cosmic airburst



Researchers continue to expand the case for the Younger Dryas Impact hypothesis. The idea proposes that a fragmented comet smashed into the Earth's atmosphere 12,800 years ago, causing a widespread climatic shift that, among other things, led to the abrupt reversal of the Earth's warming trend and into an anomalous near-glacial period called the Younger Dryas.
Published Pillars of creation star in new visualization from NASA's Hubble and Webb telescopes



Made famous in 1995 by NASA's Hubble Space Telescope, the Pillars of Creation in the heart of the Eagle Nebula have captured imaginations worldwide with their arresting, ethereal beauty. Now, NASA has released a new 3D visualization of these towering celestial structures using data from NASA's Hubble and James Webb space telescopes. This is the most comprehensive and detailed multiwavelength movie yet of these star-birthing clouds.
Published Predicting changes inside astronauts' bodies during space travel through blood sample analysis



The human body undergoes various transformations in space. However, a direct examination of organs and tissues is challenging. This study successfully identified these changes inside the body by analyzing tiny quantities of DNA and RNA molecules released from various tissues into the bloodstream while the astronauts were on the International Space Station (ISS).
Published Surprising phosphate finding in NASA's OSIRIS-REx asteroid sample



Early analysis of the asteroid Bennu sample returned by NASA's OSIRIS-REx mission has revealed dust rich in carbon, nitrogen, and organic compounds, all of which are essential components for life as we know it. Dominated by clay minerals, particularly serpentine, the sample mirrors the type of rock found at mid-ocean ridges on Earth. The magnesium-sodium phosphate found in the sample hints that the asteroid could have splintered off from an ancient, small, primitive ocean world.
Published New evidence for how heat is transported below the sun's surface



Solar physicists have revealed the interior structure of the sun's supergranules, a flow structure that transports heat from the sun's hidden interior to its surface. The researchers' analysis of the supergranules presents a challenge to the current understanding of solar convection.
Published Telltale greenhouse gases could signal alien activity



If aliens modified a planet in their solar system to make it warmer, we'd be able to tell. A new study identifies the artificial greenhouse gases that would be giveaways of a terraformed planet.
Published Marsquakes may help reveal whether liquid water exists underground on red planet



If liquid water exists today on Mars, it may be too deep underground to detect with traditional methods used on Earth. But listening to earthquakes that occur on Mars -- or marsquakes -- could offer a new tool in the search.
Published First of its kind detection made in striking new Webb image



For the first time, a phenomenon astronomers have long hoped to directly image has been captured by NASA's James Webb Space Telescope's Near-Infrared Camera (NIRCam). In this stunning image of the Serpens Nebula, the discovery lies in the northern area of this young, nearby star-forming region.
Published Geologists expect Chang'e-6 lunar surface samples to contain volcanic rock and impact ejecta



On June 25, China's Chang'e-6 (CE-6) lunar probe is set to return to Earth, carrying the first surface samples collected from the farside of the Moon. In anticipation of this historic event, scientists are publishing their predictions for the unique materials that may be found in the CE-6 samples.
Published A hidden treasure in the Milky Way -- Astronomers uncover ultrabright x-ray source



Astronomers uncovered that a well-known X-ray binary, whose exact nature has been a mystery to scientists until now, is actually a hidden ultraluminous X-ray source.
Published Star clusters observed within a galaxy in the early Universe



The history of how stars and galaxies came to be and evolved into the present day remains among the most challenging astrophysical questions to solve yet, but new research brings us closer to understanding it. New insights about young galaxies during the Epoch of Reionization have been revealed. Observations with the James Webb Space Telescope (JWST) of the galaxy Cosmic Gems arc (SPT0615-JD) have confirmed that the light of the galaxy was emitted 460 million years after the big bang. What makes this galaxy unique is that it is magnified through an effect called gravitational lensing, which has not been observed in other galaxies formed during that age.
Published Prying open the AI black box



Meet SQUID, a new computational tool. Compared with other genomic AI models, SQUID is more consistent, reduces background noise, and can yield better predictions regarding critical mutations. The new system aims to bring scientists closer to their findings' true medical implications.
Published Guiding humanity beyond the moon



What actually happens to the human body in space? While scientists and researchers have heavily researched how various factors impact the human body here on Earth, the amount of information available about changes that occur in the body in space is not as well-known. Scientists have been studying for years how the body, specifically on the molecular side, changes in space. Recently, findings depict how the modern tools of molecular biology and precision medicine can help guide humanity into more challenging missions beyond where we've already been.
Published Iron meteorites hint that our infant solar system was more doughnut than dartboard



Iron meteorites are remnants of the metallic cores of the earliest asteroids in our solar system. Iron meteorites contain refractory metals, such as iridium and platinum, that formed near the sun but were transported to the outer solar system. New research shows that for this to have happened, the protoplanetary disk of our solar system had to have been doughnut-shaped because the refractory metals could not have crossed the large gaps in a target-shaped disk of concentric rings. The paper suggests that the refractory metals moved outward as the protoplanetary disk rapidly expanded, and were trapped in the outer solar system by Jupiter.