Showing 20 articles starting at article 1
Categories: Computer Science: Virtual Reality (VR), Engineering: Graphene
Published Hydrogels can play Pong by 'remembering' previous patterns of electrical simulation



Non-living hydrogels can play the video game Pong and improve their gameplay with more experience, researchers report. The researchers hooked hydrogels up to a virtual game environment and then applied a feedback loop between the hydrogel's paddle -- encoded by the distribution of charged particles within the hydrogel -- and the ball's position -- encoded by electrical stimulation. With practice, the hydrogel's accuracy improved by up to 10%, resulting in longer rallies. The researchers say that this demonstrates the ability of non-living materials to use 'memory' to update their understanding of the environment, though more research is needed before it could be said that hydrogels can 'learn.'
Published New technology uses light to engrave erasable 3D images



Researchers invented a technique that uses a specialized light projector and a photosensitive chemical additive to imprint two- and three-dimensional images inside any polymer. The light-based engraving remains in the polymer until heat or light are applied, which erases the image and makes it ready to use again. The technology is intended for any situation where having detailed, precise visual data in a compact and easily customizable format could be critical, such as planning surgeries and developing architectural designs.
Published A tool for visualizing single-cell data



Modern cutting-edge research generates enormous amounts of data, presenting scientists with the challenge of visualizing and analyzing it. Researchers have developed a tool for visualizing large data sets. The sCIRCLE tool allows users to explore single-cell analysis data in an interactive and user-friendly way.
Published Breaking new ground for computing technologies with electron-hole crystals



A team developed a novel method to successfully visualise electron-hole crystals in an exotic quantum material. Their breakthrough could pave the way for new advancements in computing technologies, including in-memory and quantum computing.
Published AI method radically speeds predictions of materials' thermal properties



Researchers developed a machine-learning framework that can predict a key property of heat dispersion in materials that is up to 1,000 times faster than other AI methods, and could enable scientists to improve the efficiency of power generation systems and microelectronics.
Published Scientists work to build 'wind-up' sensors



An international team of scientists has shown that twisted carbon nanotubes can store three times more energy per unit mass than advanced lithium-ion batteries. The finding may advance carbon nanotubes as a promising solution for storing energy in devices that need to be lightweight, compact, and safe, such as medical implants and sensors.
Published 'Kink state' control may provide pathway to quantum electronics



The key to developing quantum electronics may have a few kinks. According to researchers, that's not a bad thing when it comes to the precise control needed to fabricate and operate such devices, including advanced sensors and lasers. The researchers fabricated a switch to turn on and off the presence of kink states, which are electrical conduction pathways at the edge of semiconducting materials.
Published Researchers develop new method for achieving controllable tuning and assessing instability in 2D materials for engineering applications



Two-dimensional (2D) materials have atomic-level thickness and excellent mechanical and physical properties, with broad application prospects in fields such as semiconductors, flexible devices, and composite materials.
Published Virtual reality training for physicians aims to heal disparities in Black maternal health care



A virtual reality training series being developed for medical students and physicians teaches them about implicit bias in their communications with their patients who are people of color and how that affects race-based health care disparities.
Published A new material derived from graphene improves the performance of neuroprostheses



Neuroprostheses allow the nervous system of a patient who has suffered an injury to connect with mechanical devices that replace paralyzed or amputated limbs. A study demonstrates in animal models how EGNITE, a derivative of graphene, allows the creation of smaller electrodes, which can interact more selectively with the nerves they stimulate, thus improving the efficacy of the prostheses.
Published Key electronic device developed for the massive arrival of 6G networks



Researchers were involved in the development of a switch, an essential device in telecommunications, capable of operating at very high frequency with lower power consumption than conventional technologies. The technology has applications in the new 6G mass communication systems and is more sustainable in terms of energy consumption than current devices.
Published A 2D device for quantum cooling



Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.
Published Single atoms show their true color



A new technique reveals single atom misfits and could help design better semiconductors used in modern and future electronics.
Published New and improved camera inspired by the human eye



Computer scientists have invented a camera mechanism that improves how robots see and react to the world around them. Inspired by how the human eye works, their innovative camera system mimics the tiny involuntary movements used by the eye to maintain clear and stable vision over time.
Published Soft, stretchy electrode simulates touch sensations using electrical signals



A team of researchers has developed a soft, stretchy electronic device capable of simulating the feeling of pressure or vibration when worn on the skin. This device represents a step towards creating haptic technologies that can reproduce a more varied and realistic range of touch sensations for applications such as virtual reality, medical prosthetics and wearable technology.
Published Prying open the AI black box



Meet SQUID, a new computational tool. Compared with other genomic AI models, SQUID is more consistent, reduces background noise, and can yield better predictions regarding critical mutations. The new system aims to bring scientists closer to their findings' true medical implications.
Published Strengthener for graphene



Layers of carbon atoms in a honeycomb array are a true supermaterial: their unusually high conductivity and favorable mechanical properties could further the development of bendable electronics, new batteries, and innovative composite materials for aeronautics and space flight. However, the development of elastic and tough films remains a challenge. A research team has now introduced a method to overcome this hurdle: they linked graphene nanolayers via 'extendable' bridging structures.
Published Female AI 'teammate' generates more participation from women



An artificial intelligence-powered virtual teammate with a female voice boosts participation and productivity among women on teams dominated by men, according to new research.
Published Virtual reality as a reliable shooting performance-tracking tool



Virtual reality technology can do more than teach weaponry skills in law enforcement and military personnel, a new study suggests: It can accurately record shooting performance and reliably track individuals' progress over time.
Published Researchers create realistic virtual rodent



To help probe the mystery of how brains control movement, scientists have created a virtual rat with an artificial brain that can move around just like a real rodent. The researchers found that activations in the virtual control network accurately predicted neural activity measured from the brains of real rats producing the same behaviors.