Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Scientists develop 'x-ray vision' technique to see inside crystals      (via sciencedaily.com)     Original source 

A team of researchers has created a new way to visualize crystals by peering inside their structures, akin to having X-ray vision. Their new technique -- which they aptly named 'Crystal Clear' -- combines the use of transparent particles and microscopes with lasers that allow scientists to see each unit that makes up the crystal and to create dynamic three-dimensional models.

Engineering: Nanotechnology Physics: Optics
Published

Development of revolutionary color-tunable photonic devices      (via sciencedaily.com)     Original source 

Team develops a flexible and stretchable device capable of omnidirectional color wavelength control.

Energy: Alternative Fuels Energy: Technology Engineering: Nanotechnology Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General Physics: Acoustics and Ultrasound
Published

Enhancing nanofibrous acoustic energy harvesters with artificial intelligence      (via sciencedaily.com)     Original source 

Scientists have employed artificial intelligence techniques to improve the design and production of nanofibers used in wearable nanofiber acoustic energy harvesters (NAEH). These acoustic devices capture sound energy from the environment and convert it into electrical energy, which can then be applied in useful devices, such as hearing aids.

Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Virtual Reality (VR) Mathematics: Modeling
Published

Children's visual experience may hold key to better computer vision training      (via sciencedaily.com)     Original source 

A novel, human-inspired approach to training artificial intelligence (AI) systems to identify objects and navigate their surroundings could set the stage for the development of more advanced AI systems to explore extreme environments or distant worlds, according to new research.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Computer Science: Virtual Reality (VR) Engineering: Robotics Research
Published

Designing environments that are robot-inclusive      (via sciencedaily.com)     Original source 

To overcome issues associated with real-life testing, researchers successfully demonstrated the use of digital twin technology within robot simulation software in assessing a robot's suitability for deployment in simulated built environments.

Energy: Technology Engineering: Nanotechnology Environmental: General Geoscience: Environmental Issues
Published

Controlling ion transport for a blue energy future      (via sciencedaily.com)     Original source 

Researchers probed the transit of cations across a nanopore membrane for the generation of osmotic energy. The team controlled the passage of cations across the membrane using a voltage applied to a gate electrode. This control allowed the cation-selective transport to be tuned from essentially zero to complete cation selectivity. The findings are expected to support the application of blue energy solutions for sustainable energy alternatives worldwide.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Fossil Fuels Energy: Technology Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Controlling water, transforming greenhouse gases      (via sciencedaily.com)     Original source 

Researchers have outlined a way to manipulate water molecules to make CO2R more efficient, with the ultimate goal of creating a clean energy loop. Through their new method, the team was able to perform CO2R with nearly 100% efficiency under mildly acidic conditions, using either gold or zinc as catalysts.

Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Offbeat: General
Published

Imperceptible sensors made from 'electronic spider silk' can be printed directly on human skin      (via sciencedaily.com)     Original source 

Researchers have developed a method to make adaptive and eco-friendly sensors that can be directly and imperceptibly printed onto a wide range of biological surfaces, whether that's a finger or a flower petal.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

How a tiny device could lead to big physics discoveries and better lasers      (via sciencedaily.com)     Original source 

Researchers have fabricated a device no wider than a human hair that will help physicists investigate the fundamental nature of matter and light. Their findings could also support the development of more efficient lasers, which are used in fields ranging from medicine to manufacturing.

Computer Science: Artificial Intelligence (AI) Computer Science: Virtual Reality (VR)
Published

AI poised to usher in new level of concierge services to the public      (via sciencedaily.com)     Original source 

Concierge services built on artificial intelligence have the potential to improve how hotels and other service businesses interact with customers, a new paper suggests.

Biology: Biochemistry Biology: Zoology Computer Science: Virtual Reality (VR) Ecology: Animals
Published

Finding the beat of collective animal motion      (via sciencedaily.com)     Original source 

Virtual Reality experiments have illuminated the rhythmic glue that could keep animals moving in synchrony.

Chemistry: Biochemistry Engineering: Nanotechnology Physics: Acoustics and Ultrasound
Published

Wearable ultrasound patch enables continuous, non-invasive monitoring of cerebral blood flow      (via sciencedaily.com)     Original source 

Engineers have developed a wearable ultrasound patch that can offer continuous, non-invasive monitoring of blood flow in the brain. The soft and stretchy patch can be comfortably worn on the temple to provide three-dimensional data on cerebral blood flow--a first in wearable technology.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Under extreme impacts, metals get stronger when heated, study finds      (via sciencedaily.com)     Original source 

Scientists have discovered that when metal is struck by an object moving at a super high velocity, the heat makes the metal stronger. The finding could lead to new approaches to designing materials for extreme environments, such as shields that protect spacecraft or equipment for high-speed manufacturing.

Chemistry: Thermodynamics Engineering: Nanotechnology Offbeat: General Physics: General Physics: Quantum Computing
Published

Strings that can vibrate forever (kind of)      (via sciencedaily.com)     Original source 

Researchers have engineered string-like resonators capable of vibrating longer at ambient temperature than any previously known solid-state object -- approaching what is currently only achievable near absolute zero temperatures. Their study pushes the edge of nanotechnology and machine learning to make some of the world's most sensitive mechanical sensors.

Energy: Technology Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Recycling carbon dioxide into household chemicals      (via sciencedaily.com)     Original source 

Scientists report a family of tin-based catalysts that efficiently converts CO2 into ethanol, acetic acid and formic acid. These liquid hydrocarbons are among the most produced chemicals in the U.S and are found in many commercial products.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Technology Engineering: Nanotechnology
Published

Powering wearable devices with high-performing carbon nanotube yarns      (via sciencedaily.com)     Original source 

Carbon nanotube (CNT) yarns are promising for flexible and fabric-type wearable materials that can convert waste heat into thermoelectricity. To improve the thermoelectric properties of CNT yarns, researchers dispersed CNT filaments in a highly viscous glycerol, enabling the production of CNT yarn with highly aligned bundles together with surfactants that prevent increased thermal conductivity. This innovative approach can significantly improve carbon nanotube-based thermoelectric materials, making it possible to power wearable devices using just body heat.

Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Enhancing superconductivity of graphene-calcium superconductors      (via sciencedaily.com)     Original source 

Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.

Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Engineering: Nanotechnology
Published

Blueprints of self-assembly      (via sciencedaily.com)     Original source 

Scientists have taken a step closer to replicating nature's processes of self-assembly. The study describes the synthetic construction of a tiny, self-assembled crystal known as a 'pyrochlore,' which bears unique optical properties. The advance provides a steppingstone to the eventual construction of sophisticated, self-assembling devices at the nanoscale -- roughly the size of a single virus.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Expanding on the fundamental principles of liquid movement      (via sciencedaily.com)     Original source 

We are living in a world surrounded by liquid and flow, and understanding the principles that govern its movement is vital in our high-tech world. Through mathematical modeling and experimentation, researchers have expanded on Tanner's Law -- a law in fluid dynamics that describes how non-volatile liquids move across surfaces -- to cover a wider range of volatile liquids. These findings have the potential to play a role in various liquid-based industries such as electronics cooling.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics
Published

Ion irradiation offers promise for 2D material probing      (via sciencedaily.com)     Original source 

Two-dimensional materials such as graphene promise to form the basis of incredibly small and fast technologies, but this requires a detailed understanding of their electronic properties. New research demonstrates that fast electronic processes can be probed by irradiating the materials with ions first.