Showing 20 articles starting at article 241
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Virtual Reality (VR), Physics: Quantum Computing
Published Conduction electrons drive giant, nonlinear elastic response in Sr2RuO4



The hardness of a material normally is set by the strength of chemical bonds between electrons of neighboring atoms, not by freely flowing conduction electrons. Now a team of scientists has shown that current-carrying electrons can make the lattice much softer than usual in the material Sr2RuO4.
Published Major milestone achieved in new quantum computing architecture



Researchers report a significant advance in quantum computing. They have prolonged the coherence time of their single-electron qubit to an impressive 0.1 milliseconds, nearly a thousand-fold improvement.
Published Physicists simulate interacting quasiparticles in ultracold quantum gas



In physics, quasiparticles are used to describe complex processes in solids. In ultracold quantum gases, these quasiparticles can be reproduced and studied. Now scientists have been able to observe in experiments how Fermi polarons -- a special type of quasiparticle -- can interact with each other.
Published Using sound to test devices, control qubits



Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material.
Published How quantum light 'sees' quantum sound



Researchers have proposed a new way of using quantum light to 'see' quantum sound. A new paper reveals the quantum-mechanical interplay between vibrations and particles of light, known as photons, in molecules. It is hoped that the discovery may help scientists better understand the interactions between light and matter on molecular scales. And it potentially paves the way for addressing fundamental questions about the importance of quantum effects in applications ranging from new quantum technologies to biological systems.
Published Simulating cold sensation without actual cooling



The perception of persistent thermal sensations, such as changes in temperature, tends to gradually diminish in intensity as our bodies become accustomed to the temperature. This phenomenon leads to a shift in our perception of temperature when transitioning between different scenes in a virtual environment. Researchers have now developed a technology to generate a virtual cold sensation via a non-contact method without physically altering the skin temperature.
Published Researchers demonstrate a high-speed electrical readout method for graphene nanodevices



Graphene is often referred to as a wonder material for its advantageous qualities. But its application in quantum computers, while promising, is stymied by the challenge of getting accurate measurements of quantum bit states with existing techniques. Now, researchers have developed design guidelines that enable radio-frequency reflectometry to achieve high-speed electrical readouts of graphene nanodevices.
Published A miniature magnetic resonance imager made of diamond



The development of tumors begins with miniscule changes within the body's cells; ion diffusion at the smallest scales is decisive in the performance of batteries. Until now the resolution of conventional imaging methods has not been high enough to represent these processes in detail. A research team has now developed diamond quantum sensors which can be used to improve resolution in magnetic imaging.
Published Electrical control of quantum phenomenon could improve future electronic devices



A new electrical method to conveniently change the direction of electron flow in some quantum materials could have implications for the development of next-generation electronic devices and quantum computers. A team of researchers has developed and demonstrated the method in materials that exhibit the quantum anomalous Hall (QAH) effect -- a phenomenon in which the flow of electrons along the edge of a material does not lose energy.
Published Physicists create new form of antenna for radio waves



Physicists have used a small glass bulb containing an atomic vapor to demonstrate a new form of antenna for radio waves. The bulb was 'wired up' with laser beams and could therefore be placed far from any receiver electronics.
Published Virtual reality helps people with hoarding disorder practice decluttering



A new study lets patients practice letting go of treasured objects in simulations of their own homes.
Published Virtual driving assessment predicts risk of crashing for newly licensed teen drivers



New research found that driving skills measured at the time of licensure on a virtual driving assessment (VDA), which exposes drivers to common serious crash scenarios, helps predict crash risk in newly licensed young drivers. This study brings the research community one step closer to identifying which skill deficits put young new drivers at higher risk for crashes. With this cutting-edge information, more personalized interventions can be developed to improve the driving skills that prevent crashes.
Published Simulations of 'backwards time travel' can improve scientific experiments



Physicists have shown that simulating models of hypothetical time travel can solve experimental problems that appear impossible to solve using standard physics.
Published Ionic crystal generates molecular ions upon positron irradiation, finds new study



The interaction between solid matter and positron (the antiparticle of electron) has provided important insights across a variety of disciplines, including atomic physics, materials science, elementary particle physics, and medicine. However, the experimental generation of positronic compounds by bombardment of positrons onto surfaces has proved challenging. In a new study, researchers detect molecular ion desorption from the surface of an ionic crystal when bombarded with positrons and propose a model based on positronic compound generation to explain their results.
Published Twisted science: New quantum ruler to explore exotic matter



Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.
Published Machine learning used to probe the building blocks of shapes



Applying machine learning to find the properties of atomic pieces of geometry shows how AI has the power to accelerate discoveries in maths.
Published New internet addiction spectrum: Where are you on the scale?



Young people (24 years and younger) spend an average of six hours a day online, primarily using their smartphones, according to new research. Older people (those 24 years and older) spend 4.6 hours online.
Published Powering the quantum revolution: Quantum engines on the horizon



Scientists unveil exciting possibilities for the development of highly efficient quantum devices.
Published Drug discovery on an unprecedented scale


Boosting virtual screening with machine learning allowed for a 10-fold time reduction in the processing of 1.56 billion drug-like molecules. Researchers teamed up with industry and supercomputers to carry out one of the world's largest virtual drug screens.
Published Shh! Quiet cables set to help reveal rare physics events


Newly developed ultra-low radiation cables reduce background noise for neutrino and dark matter detectors.