Chemistry: Biochemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists discover 'stacked pancakes of liquid magnetism'      (via sciencedaily.com)     Original source 

Physicists have discovered stacked pancakes of 'liquid' magnetism that may account for the strange electronic behavior of some layered helical magnets.

Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Leaky-wave metasurfaces: A perfect interface between free-space and integrated optical systems      (via sciencedaily.com)     Original source 

Researchers have developed a new class of integrated photonic devices -- 'leaky-wave metasurfaces' -- that convert light initially confined in an optical waveguide to an arbitrary optical pattern in free space. These are the first to demonstrate simultaneous control of all four optical degrees of freedom. Because they're so thin, transparent, and compatible with photonic integrated circuits, they can be used to improve optical displays, LIDAR, optical communications, and quantum optics.

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Symmetric graphene quantum dots for future qubits      (via sciencedaily.com)     Original source 

Quantum dots in semiconductors such as silicon or gallium arsenide have long been considered hot candidates for hosting quantum bits in future quantum processors. Scientists have now shown that bilayer graphene has even more to offer here than other materials. The double quantum dots they have created are characterized by a nearly perfect electron-hole-symmetry that allows a robust read-out mechanism -- one of the necessary criteria for quantum computing.

Engineering: Robotics Research Environmental: General Environmental: Water Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum lidar prototype acquires real-time 3D images while fully submerged underwater      (via sciencedaily.com)     Original source 

Researchers have demonstrated a prototype lidar system that uses quantum detection technology to acquire 3D images while submerged underwater. The high sensitivity of this system could allow it to capture detailed information even in extremely low-light conditions found underwater.

Chemistry: Biochemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers develop manual for engineering spin dynamics in nanomagnets      (via sciencedaily.com)     Original source 

An international team of researchers has developed a comprehensive manual for engineering spin dynamics in nanomagnets -- an important step toward advancing spintronic and quantum-information technologies.

Computer Science: General Computer Science: Quantum Computers Mathematics: Puzzles Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quan­tum com­puter in reverse gear      (via sciencedaily.com)     Original source 

Large numbers can only be factorized with a great deal of computational effort. Physicists are now providing a blueprint for a new type of quantum computer to solve the factorization problem, which is a cornerstone of modern cryptography.

Computer Science: General Computer Science: Virtual Reality (VR)
Published

Joyful music could be a game changer for virtual reality headaches      (via sciencedaily.com)     Original source 

Listening to music could reduce the dizziness, nausea and headaches virtual reality users might experience after using digital devices, research suggests. Cybersickness -- a type of motion sickness from virtual reality experiences such as computer games -- significantly reduces when joyful music is part of the immersive experience, the study found. The intensity of the nausea-related symptoms of cybersickness was also found to substantially decrease with both joyful and calming music.

Computer Science: Virtual Reality (VR)
Published

Realistic simulated driving environment based on 'crash-prone' Michigan intersection      (via sciencedaily.com)     Original source 

The first statistically realistic roadway simulation has now been developed. While it currently represents a particularly perilous roundabout, future work will expand it to include other driving situations for testing autonomous vehicle software.

Computer Science: Virtual Reality (VR) Mathematics: Puzzles
Published

Researchers explore why some people get motion sick playing VR games while others don't      (via sciencedaily.com)     Original source 

The way our senses adjust while playing high-intensity virtual reality games plays a critical role in understanding why some people experience severe cybersickness and others don't.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Tunneling electrons      (via sciencedaily.com)     Original source 

By superimposing two laser fields of different strengths and frequency, the electron emission of metals can be measured and controlled precisely to a few attoseconds. Physicists have shown that this is the case. The findings could lead to new quantum-mechanical insights and enable electronic circuits that are a million times faster than today.

Chemistry: Biochemistry Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists demonstrate unprecedented sensitivity in measuring time delay between two photons      (via sciencedaily.com)     Original source 

A team of researchers has demonstrated the ultimate sensitivity allowed by quantum physics in measuring the time delay between two photons. This breakthrough has significant implications for a range of applications, including more feasible imaging of nanostructures, including biological samples, and nanomaterial surfaces, as well as quantum enhanced estimation based on frequency-resolved boson sampling in optical networks.

Computer Science: General Computer Science: Quantum Computers Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists have full state of a quantum liquid down cold      (via sciencedaily.com)     Original source 

A team of physicists has illuminated certain properties of quantum systems by observing how their fluctuations spread over time. The research offers an intricate understanding of a complex phenomenon that is foundational to quantum computing.

Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Putting hydrogen on solid ground: Simulations with a machine learning model predict a new phase of solid hydrogen      (via sciencedaily.com)     Original source 

Hydrogen, the most abundant element in the universe, is found everywhere from the dust filling most of outer space to the cores of stars to many substances here on Earth. This would be reason enough to study hydrogen, but its individual atoms are also the simplest of any element with just one proton and one electron.

Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum entanglement could make accelerometers and dark matter sensors more accurate      (via sciencedaily.com)     Original source 

The 'spooky action at a distance' that once unnerved Einstein may be on its way to being as pedestrian as the gyroscopes that currently measure acceleration in smartphones.

Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Two qudits fully entangled      (via sciencedaily.com)     Original source 

Recently quantum computers started to work with more than just the zeros and ones we know from classical computers. Now a team demonstrates a way to efficiently create entanglement of such high-dimensional systems to enable more powerful calculations.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum computer applied to chemistry      (via sciencedaily.com)     Original source 

There are high expectations that quantum computers may deliver revolutionary new possibilities for simulating chemical processes. This could have a major impact on everything from the development of new pharmaceuticals to new materials. Researchers have now used a quantum computer to undertake calculations within a real-life case in chemistry.

Computer Science: General Computer Science: Virtual Reality (VR)
Published

Surface steers signals for next-gen networks      (via sciencedaily.com)     Original source 

5G signals known as millimeter-wave carry enormous amounts of information but are very easy to block. A new device helps these signals get around obstacles posed by walls, furniture and people.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Embracing variations: Physicists analyze noise in Lambda-type quantum memory      (via sciencedaily.com)     Original source 

In the future, communications networks and computers will use information stored in objects governed by the microscopic laws of quantum mechanics. This capability can potentially underpin communication with greatly enhanced security and computers with unprecedented power. A vital component of these technologies will be memory devices capable of storing quantum information to be retrieved at will.