Showing 20 articles starting at article 401
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Computer Science: Virtual Reality (VR)
Published Using mussels and silkworm cocoons to stop organ bleeding



A collaborative research team develops an absorbent multifunctional nanofiber adhesive hemostat based on a protein biomaterial.
Published UBC Okanagan researchers look to the past to improve construction sustainability



Researchers are revisiting old building practices -- the use of by-products and cast-offs -- as a way to improve building materials and sustainability of the trade. A technique known as rammed earth construction uses materials that are alternatives to cement and are often more readily available in the environment. One such alternative is wood fly ash, a by-product of pulp mills and coal-fired power plants.
Published Chemists synthesize unique anticancer molecules using novel approach



Nearly 30 years ago, scientists discovered a unique class of anticancer molecules in a family of bryozoans, a phylum of marine invertebrates found in tropical waters. The chemical structures of these molecules, which consist of a dense, highly complex knot of oxidized rings and nitrogen atoms, has attracted the interest of organic chemists worldwide, who aimed to recreate these structures from scratch in the laboratory. However, despite considerable effort, it has remained an elusive task. Until now, that is. A team of chemists has succeeded in synthesizing eight of the compounds for the first time using an approach that combines inventive chemical strategy with the latest technology in small molecule structure determination.
Published A new vibrant blue pottery pigment with less cobalt



Whether ultramarine, cerulean, Egyptian or cobalt, blue pigments have colored artworks for centuries. Now, seemingly out of the blue, scientists have discovered a new blue pigment that uses less cobalt but still maintains a brilliant shine. Though something like this might only happen once in a blue moon, the cobalt-doped barium aluminosilicate colorant withstands the high temperatures found in a kiln and provides a bright color to glazed tiles.
Published Graphene research: Numerous products, no acute dangers found by study



Graphene is an enormously promising material. It consists of a single layer of carbon atoms arranged in a honeycomb pattern and has extraordinary properties: exceptional mechanical strength, flexibility, transparency and outstanding thermal and electrical conductivity. If the already two-dimensional material is spatially restricted even more, for example into a narrow ribbon, controllable quantum effects can be created. This could enable a wide range of applications, from vehicle construction and energy storage to quantum computing.
Published An environmentally friendly way to turn seafood waste into value-added products



Reduce, reuse, recycle, and repurpose: These are all ways we can live more sustainably. One tricky aspect of recycling, though, is that sometimes the recycling process is chemically intensive, and this is the case for recycling one of the world's most abundant materials -- chitin. Researchers have tackled this problem and found a way to sustainably recover chitin from seafood waste.
Published Revolutionary breakthrough in solar energy: Most efficient QD solar cells



A research team has unveiled a novel ligand exchange technique that enables the synthesis of organic cation-based perovskite quantum dots (PQDs), ensuring exceptional stability while suppressing internal defects in the photoactive layer of solar cells.
Published Angle-dependent holograms made possible by metasurfaces



Scientists unveil metasurface technology, allowing for angle-dependent holograms.
Published Plasma scientists develop computer programs that could reduce the cost of microchips and stimulate American manufacturing



Fashioned from the same element found in sand and covered by intricate patterns, microchips power smartphones, augment appliances and aid the operation of cars and airplanes. Now, scientists are developing computer simulation codes that will outperform current simulation techniques and aid the production of microchips using plasma, the electrically charged state of matter also used in fusion research. These codes could help increase the efficiency of the manufacturing process and potentially stimulate the renaissance of the chip industry in the United States.
Published Engineering a coating for disease-free produce



Texas A&M researchers combine food-grade wax with essential oils to defend produce from bacteria.
Published It's the spin that makes the difference



Biomolecules such as amino acids and sugars occur in two mirror-image forms -- in all living organisms, however, only one is ever found. Why this is the case is still unclear. Researchers have now found evidence that the interplay between electric and magnetic fields could be at the origin of this phenomenon.
Published Physicists develop more efficient solar cell



Physicists have used complex computer simulations to develop a new design for significantly more efficient solar cells than previously available. A thin layer of organic material, known as tetracene, is responsible for the increase in efficiency.
Published Plastic recycling with a protein anchor



Polystyrene is a widespread plastic that is essentially not recyclable when mixed with other materials and is not biodegradable. A research team has now introduced a biohybrid catalyst that oxidizes polystyrene microparticles to facilitate their subsequent degradation. The catalyst consists of a specially constructed 'anchor peptide' that adheres to polystyrene surfaces and a cobalt complex that oxidizes polystyrene.
Published Advanced artificial photosynthesis catalyst uses CO2 more efficiently to create biodegradable plastics



A research team that had previously succeeded in synthesizing fumaric acid using bicarbonate and pyruvic acid, and carbon dioxide collected directly from the gas phase as one of the raw materials, has now created a new photosensitizer and developed a new artificial photosynthesis technology, effectively doubling the yield of fumaric acid production compared to the previous method. The results of this research are expected to reduce carbon dioxide emissions and provide an innovative way to produce biodegradable plastics while reusing waste resources.
Published Discovery of new Li ion conductor unlocks new direction for sustainable batteries



Researchers have discovered a solid material that rapidly conducts lithium ions. Consisting of non-toxic earth-abundant elements, the new material has high enough Li ion conductivity to replace the liquid electrolytes in current Li ion battery technology, improving safety and energy capacity. The research team have synthesized the material in the laboratory, determined its structure and demonstrated it in a battery cell.
Published First-ever atomic freeze-frame of liquid water



Scientists report the first look at electrons moving in real-time in liquid water; the findings open up a whole new field of experimental physics.
Published With just a little electricity, researchers boost common catalytic reactions



A simple new technique could boost the efficiency of some key chemical processing, by up to a factor of 100,000, researchers report. The reactions are at the heart of petrochemical processing, pharmaceutical manufacturing, and many other industrial chemical processes.
Published Trapping sulfate to benefit health, industry and waterways



Scientists have developed a new method to measure and remove sulfate from water, potentially leading to cleaner waterways and more effective nuclear waste treatments.
Published Do AI-driven chemistry labs actually work? New metrics promise answers



The fields of chemistry and materials science are seeing a surge of interest in 'self-driving labs,' which make use of artificial intelligence and automated systems to expedite research and discovery. Researchers are now proposing a suite of definitions and performance metrics that will allow researchers, non-experts, and future users to better understand both what these new technologies are doing and how each technology is performing in comparison to other self-driving labs.
Published Biomanufacturing using chemically synthesized sugars enables sustainable supply of sugar without competing with food



Researchers have succeeded in biomanufacturing from chemically synthesized sugar for the first time in the world. With refinement of this technology, one can envision a future society in which the sugar required for biomanufacturing can be obtained 'anytime, anywhere, and at high rate'. In the future, biomanufacturing using chemically synthesized sugar is expected to be a game changer in the biotechnology field -- including the production of biochemicals, biofuels, and food, where sugar is an essential raw material -- ultimately leading to the creation of a new bio-industry.