Showing 20 articles starting at article 741
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Space: General
Published New technique in error-prone quantum computing makes classical computers sweat



Today's quantum computers often calculate the wrong answer because of noisy environments that interfere with the quantum entanglement of qubits. IBM Quantum has pioneered a technique that accounts for the noise to achieve reliable results. They tested this error mitigation strategy against supercomputer simulations run by physicists, and for the hardest calculations, the quantum computer bested the supercomputer. This is evidence for the utility of today's noisy quantum computers for performing real-world calculations.
Published Sun's coldest region stores secret to heating million-degree corona



Researchers have unveiled the discovery of intense wave energy from a relatively cool, dark and strongly magnetized plasma region on the Sun, capable of traversing the solar atmosphere and maintaining temperatures of a million degrees Kelvin inside the corona. Researchers say the finding is the latest key to unraveling a host of related mysteries pertaining to Earth's nearest star.
Published Key building block for life found at Saturn's moon Enceladus



The search for extraterrestrial life in our solar system just got more exciting. A team of scientists has discovered new evidence that the subsurface ocean of Saturn's moon Enceladus contains a key building block for life. The team directly detected phosphorus in the form of phosphates originating from the moon's ice-covered global ocean using data from NASA's Cassini mission. Cassini explored Saturn and its system of rings and moons for over 13 years.
Published Pass the salt: This space rock holds clues as to how Earth got its water



The discovery of tiny salt grains in a sample from an asteroid provides strong evidence that liquid water may be more common in the solar system than previously thought.
Published DESI early data release holds nearly two million objects



The first batch of data from the Dark Energy Spectroscopic Instrument is now available for researchers to explore. Taken during the experiment's 'survey validation' phase, the data include distant galaxies and quasars as well as stars in our own Milky Way.
Published Flaring star could be down to young planet's disc inferno



New simulations offer new explanation for star's 85-year flare. In this scenario, a young giant planet is burning up very close to its star, suggesting solar systems may have hosted many of such planets that have since 'evaporated'.
Published A new Tatooine-like multi-planetary system identified



An international team of astronomers has announced the second-ever discovery of a multiplanetary circumbinary system.
Published Mori3: A polygon shape-shifting robot for space travel



By combining inspiration from the digital world of polygon meshing and the biological world of swarm behavior, the Mori3 robot can morph from 2D triangles into almost any 3D object. The research shows the promise of modular robotics for space travel.
Published Astronomers discover supernova explosion through rare 'cosmic magnifying glasses'



An international team of scientists recently discovered an exceptionally rare gravitationally lensed supernova, which the team named 'SN Zwicky.' Located more than 4 billion light years away, the supernova was magnified nearly 25 times by a foreground galaxy acting as a lens. The discovery presents a unique opportunity for astronomers to learn more about the inner cores of galaxies, dark matter and the mechanics behind universe expansion.
Published Using photosynthesis for Martian occupation -- while making space travel more sustainable



Researchers are working on sustainable technology to harvest solar power in space -- which could supplement life support systems on the Moon and Mars.
Published 'Hot Jupiters' may not be orbiting alone



Astronomers challenge longstanding beliefs about the isolation of 'hot Jupiters' and proposes a new mechanism for understanding the exoplanets' evolution.
Published Elusive planets play 'hide and seek' with CHEOPS



Astronomers have clearly identified the existence of four new exoplanets. The four mini-Neptunes are smaller and cooler, and more difficult to find than the so-called Hot Jupiter exoplanets which have been found in abundance.
Published Schrödinger's cat makes better qubits



Drawing from Schrodinger's cat thought experiment, scientists have built a 'critical cat code' qubit that uses bosons to store and process information in a way that is more reliable and resistant to errors than previous qubit designs.
Published Long missions, frequent travel take a toll on astronauts' brains



A study looking at how the human brain reacts to traveling outside Earth's gravity suggests frequent flyers should wait three years after longer missions to allow the physiological changes in their brains to reset.
Published What made the brightest cosmic explosion of all time so exceptional?



Last year, telescopes around the world registered the brightest cosmic explosion of all time. Astrophysicists can now explain what made it so dazzling.
Published New study identifies mechanism driving the sun's fast wind



Researchers used data from NASA's Parker Solar Probe to explain how the solar wind is capable of surpassing speeds of 1 million miles per hour. They discovered that the energy released from the magnetic field near the sun's surface is powerful enough to drive the fast solar wind, which is made up of ionized particles -- called plasma -- that flow outward from the sun.
Published Not your average space explosion: Very long baseline array finds classical novae are anything but simple



While studying classical novae using the National Radio Astronomy Observatory's Very Long Baseline Array (VLBA), a graduate researcher uncovered evidence the objects may have been erroneously typecast as simple. The new observations detected non-thermal emission from a classical nova with a dwarf companion.
Published New superconducting diode could improve performance of quantum computers and artificial intelligence



A team has developed a more energy-efficient, tunable superconducting diode -- a promising component for future electronic devices -- that could help scale up quantum computers for industry and improve artificial intelligence systems.
Published First detection of secondary supermassive black hole in a well-known binary system



An international team of astronomers observed the second one of the two supermassive black holes circling each other in an active galaxy OJ 287.
Published Proposed design could double the efficiency of lightweight solar cells for space-based applications



When it comes to supplying energy for space exploration and settlements, commonly available solar cells made of silicon or gallium arsenide are still too heavy to be feasibly transported by rocket. To address this challenge, a wide variety of lightweight alternatives are being explored, including solar cells made of a thin layer of molybdenum selenide, which fall into the broader category of 2D transition metal dichalcogenide (2D TMDC) solar cells. Researchers propose a device design that can take the efficiencies of 2D TMDC devices from 5%, as has already been demonstrated, to 12%.