Showing 20 articles starting at article 381
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Computer Science: Quantum Computers
Published Microwaves advance solar-cell production and recycling



New technology advances solar-cell production and recycling. New microwave technology will improve the manufacture of solar cells and make them easier to recycle.
Published Processing data at the speed of light



Scientists have developed an extremely small and fast nano-excitonic transistor.
Published Laser light hybrids control giant currents at ultrafast times



The flow of matter, from macroscopic water currents to the microscopic flow of electric charge, underpins much of the infrastructure of modern times. In the search for breakthroughs in energy efficiency, data storage capacity, and processing speed, scientists search for ways in which to control the flow of quantum aspects of matter such as the 'spin' of an electron -- its magnetic moment -- or its 'valley state', a novel quantum aspect of matter found in many two dimensional materials. A team of researchers has recently discovered a route to induce and control the flow of spin and valley currents at ultrafast times with specially designed laser pulses, offering a new perspective on the ongoing search for the next generation of information technologies.
Published Gentle method allows for eco-friendly recycling of solar cells



By using a new method, precious metals can be efficiently recovered from thin-film solar cells. The method is also more environmentally friendly than previous methods of recycling and paves the way for more flexible and highly efficient solar cells.
Published Chemists redesign biological PHAs, 'dream' biodegradable plastics



They've been called 'dream' plastics: polyhydroxyalkanoates, or PHAs. Already the basis of a fledgling industry, they're a class of polymers naturally created by living microorganisms, or synthetically produced from biorenewable feedstocks. They're biodegradable in the ambient environment, including oceans and soil.
Published Cities will need more resilient electricity networks to cope with extreme weather



Dense urban areas amplify the effects of higher temperatures, due to the phenomenon of heat islands in cities. This makes cities more vulnerable to extreme climate events. Large investments in the electricity network will be necessary to cool us down during heatwaves and keep us warm during cold snaps, according to a new study.
Published New textile unravels warmth-trapping secrets of polar bear fur



Engineers have invented a fabric that concludes the 80-year quest to make a synthetic textile modeled on polar bear fur. The results are already being developed into commercially available products.
Published How to overcome noise in quantum computations



Scientists have made significant progress in quantum computing by deriving a formula that predicts the effects of environmental noise. This is crucial for designing and building quantum computers capable of working in our imperfect world.
Published DMI allows magnon-magnon coupling in hybrid perovskites



An international group of researchers has created a mixed magnon state in an organic hybrid perovskite material by utilizing the Dzyaloshinskii--Moriya-Interaction (DMI). The resulting material has potential for processing and storing quantum computing information.
Published Absolute zero in the quantum computer



Absolute zero cannot be reached -- unless you have an infinite amount of energy or an infinite amount of time. Scientists in Vienna (Austria) studying the connection between thermodynamics and quantum physics have now found out that there is a third option: Infinite complexity. It turns out that reaching absolute zero is in a way equivalent to perfectly erasing information in a quantum computer, for which an infinetly complex quantum computer would be required.
Published Thermal paint: MXene spray coating can harness infrared radiation for heating or cooling



An international team of researchers has found that a thin coating of MXene -- a type of two-dimensional nanomaterial -- could enhance a material's ability to trap or shed heat. The discovery, which is tied to MXene's ability to regulate the passage of ambient infrared radiation, could lead to advances in thermal clothing, heating elements and new materials for radiative heating and cooling.
Published Can a solid be a superfluid? Engineering a novel supersolid state from layered 2D materials



Physicists predict that layered electronic 2D semiconductors can host a curious quantum phase of matter called the supersolid. This counterintuitive quantum material simultaneously forms a rigid crystal, and yet at the same time allows particles to flow without friction, with all the particles belong to the same single quantum state.
Published Colorful films could help buildings, cars keep their cool


The cold blast of an air conditioner can be a relief as temperatures soar, but 'A/C' units require large amounts of energy and can leak greenhouse gases. Today, scientists report an eco-friendly alternative -- a plant-based film that cools when exposed to sunlight and comes in many textures and bright, iridescent colors. The material could someday keep buildings, cars and other structures cool without requiring power.
Published Surprise effect: Methane cools even as it heats


Most climate models do not yet account for a recent discovery: methane traps a great deal of heat in Earth's atmosphere, but also creates cooling clouds that offset 30% of the heat.
Published What really matters in multi-story building design?


The impact of multi-story building design considerations on embodied carbon emissions, cost, and operational energy has been revealed.
Published Robot caterpillar demonstrates new approach to locomotion for soft robotics


Researchers have demonstrated a caterpillar-like soft robot that can move forward, backward and dip under narrow spaces. The caterpillar-bot's movement is driven by a novel pattern of silver nanowires that use heat to control the way the robot bends, allowing users to steer the robot in either direction.
Published 'Y-ball' compound yields quantum secrets


Scientists investigating a compound called 'Y-ball' -- which belongs to a mysterious class of 'strange metals' viewed as centrally important to next-generation quantum materials -- have found new ways to probe and understand its behavior.
Published Surprise in the quantum world: Disorder leads to ferromagnetic topological insulator


Magnetic topological insulators are an exotic class of materials that conduct electrons without any resistance at all and so are regarded as a promising breakthrough in materials science. Researchers have achieved a significant milestone in the pursuit of energy-efficient quantum technologies by designing the ferromagnetic topological insulator MnBi6Te10 from the manganese bismuth telluride family. The amazing thing about this quantum material is that its ferromagnetic properties only occur when some atoms swap places, introducing antisite disorder.
Published Molecular teamwork makes the organic dream work


Molecular engineers have triggered a domino-like structural transition in an organic semiconductor. The energy- and time-saving phenomenon may enhance the performance of smartwatches, solar cells, and other organic electronics.
Published Bushfire safe rooms may save lives


Researchers have built and tested a bushfire safe room that exceeds current Australian standards and could keep people alive or protect valuables when evacuation is no longer an option.