Chemistry: Biochemistry Chemistry: General Chemistry: Thermodynamics Engineering: Nanotechnology Physics: Optics
Published

New technique pinpoints nanoscale 'hot spots' in electronics to improve their longevity      (via sciencedaily.com)     Original source 

Researchers engineered a new technique to identify at the nanoscale level what components are overheating in electronics and causing their performance to fail.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Capturing carbon with energy-efficient sodium carbonate-nanocarbon hybrid material      (via sciencedaily.com)     Original source 

Carbon capture is a promising approach for mitigating carbon dioxide (CO2) emissions. Different materials have been used to capture CO2 from industrial exhaust gases. Scientists developed hybrid CO2 capture materials containing sodium carbonate and nanocarbon prepared at different temperatures, tested their performance, and identified the optimal calcination temperature condition. They found that the hybrid material exhibits and maintains high CO2 capture capacity for multiple regeneration cycles at a lower temperature, making it cost- and energy-effective.

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Fossil Fuels Environmental: General Geoscience: Environmental Issues
Published

Hydrogen flight looks ready for take-off with new advances      (via sciencedaily.com)     Original source 

The possibility of hydrogen-powered flight means greater opportunities for fossil-free travel, and the technological advances to make this happen are moving fast. New studies show that almost all air travel within a 750-mile radius (1200 km) could be made with hydrogen-powered aircraft by 2045, and with a novel heat exchanger currently in development, this range could be even further.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A breakthrough on the edge: One step closer to topological quantum computing      (via sciencedaily.com)     Original source 

Researchers have achieved a significant breakthrough in quantum materials, potentially setting the stage for advancements in topological superconductivity and robust quantum computing.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Moving from the visible to the infrared: Developing high quality nanocrystals      (via sciencedaily.com)     Original source 

Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.

Chemistry: Thermodynamics Computer Science: General Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A 2D device for quantum cooling      (via sciencedaily.com)     Original source 

Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.

Chemistry: Thermodynamics Energy: Alternative Fuels Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Cool roofs are best at beating cities' heat      (via sciencedaily.com)     Original source 

Painting roofs white or covering them with a reflective coating would be more effective at cooling cities like London than vegetation-covered 'green roofs,' street-level vegetation or solar panels, finds a new study led by UCL researchers.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A genetic algorithm for phononic crystals      (via sciencedaily.com)     Original source 

Researchers tested phononic nanomaterials designed with an automated genetic algorithm that responded to light pulses with controlled vibrations. This work may help in the development of next-generation sensors and computer devices.

Chemistry: Biochemistry Chemistry: Thermodynamics
Published

Scientists probe chilling behavior of promising solid-state cooling material      (via sciencedaily.com)     Original source 

A research team has bridged a knowledge gap in atomic-scale heat motion. This new understanding holds promise for enhancing materials to advance an emerging technology called solid-state cooling.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Visual explanations of machine learning models to estimate charge states in quantum dots      (via sciencedaily.com)     Original source 

To form qubit states in semiconductor materials, it requires tuning for numerous parameters. But as the number of qubits increases, the amount of parameters also increases, thereby complicating this process. Now, researchers have automated this process, overcoming a significant barrier to realizing quantum computers.

Chemistry: Biochemistry Chemistry: General Chemistry: Thermodynamics Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Severe Weather Physics: Optics
Published

Common plastics could passively cool and heat buildings with the seasons      (via sciencedaily.com)     Original source 

By restricting radiant heat flows between buildings and their environment to specific wavelengths, coatings engineered from common materials can achieve energy savings and thermal comfort that goes beyond what traditional building envelopes can achieve.

Chemistry: Thermodynamics Energy: Technology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Characterization of the extraordinary thermoelectric properties of cadmium arsenide thin films      (via sciencedaily.com)     Original source 

If there's one thing we humans are good at, it's producing heat. Significant amounts, and in many cases most of the energy we generate and put into our systems we lose as heat, whether it be our appliances, our transportation, our factories, even our electrical grid.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Understanding quantum states: New research shows importance of precise topography in solid neon qubits      (via sciencedaily.com)     Original source 

A new study shows new insight into the quantum state that describes the condition of electrons on an electron-on-solid-neon quantum bit, information that can help engineers build this innovative technology.

Chemistry: Thermodynamics Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Offbeat: Earth and Climate Offbeat: General
Published

Small, adsorbent 'fins' collect humidity rather than swim through water      (via sciencedaily.com)     Original source 

Clean, safe water is a limited resource and access to it depends on local bodies of water. But even dry regions have some water vapor in the air. To harvest small amounts of humidity, researchers developed a compact device with absorbent-coated fins that first trap moisture and then generate potable water when heated. They say the prototype could help meet growing demands for water, especially in arid locations.

Computer Science: Quantum Computers
Published

Scientists at uOttawa develop innovative method to validate quantum photonics circuits performance      (via sciencedaily.com)     Original source 

A team of researchers has developed an innovative technique for evaluating the performance of quantum circuits. This significant advancement represents a substantial leap forward in the field of quantum computing.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breakthrough may clear major hurdle for quantum computers      (via sciencedaily.com)     Original source 

The potential of quantum computers is currently thwarted by a trade-off problem. Quantum systems that can carry out complex operations are less tolerant to errors and noise, while systems that are more protected against noise are harder and slower to compute with. Now a research team has created a unique system that combats the dilemma, thus paving the way for longer computation time and more robust quantum computers.

Chemistry: General Chemistry: Organic Chemistry Computer Science: Quantum Computers Energy: Alternative Fuels Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New material puts eco-friendly methanol conversion within reach      (via sciencedaily.com)     Original source 

Researchers have developed innovative, eco-friendly quantum materials that can drive the transformation of methanol into ethylene glycol. This discovery opens up new possibilities for using eco-friendly materials in photocatalysis, paving the way for sustainable chemical production.

Computer Science: Quantum Computers Geoscience: Earth Science Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum entanglement measures Earth rotation      (via sciencedaily.com)     Original source 

Researchers carried out a pioneering experiment where they measured the effect of the rotation of Earth on quantum entangled photons. The work represents a significant achievement that pushes the boundaries of rotation sensitivity in entanglement-based sensors, potentially setting the stage for further exploration at the intersection between quantum mechanics and general relativity.