Showing 20 articles starting at article 421
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Computer Science: Quantum Computers
Published Let there be (controlled) light


In the very near future, quantum computers are expected to revolutionize the way we compute, with new approaches to database searches, AI systems, simulations and more. But to achieve such novel quantum technology applications, photonic integrated circuits which can effectively control photonic quantum states -- the so-called qubits -- are needed. Physicists have made a breakthrough in this effort: for the first time, they demonstrated the controlled creation of single-photon emitters in silicon at the nanoscale.
Published Theory can sort order from chaos in complex quantum systems


Theoretical chemists have developed a theory that can predict the threshold at which quantum dynamics switches from 'orderly' to 'random,' as shown through research using large-scale computations on photosynthesis models.
Published The quantum twisting microscope: A new lens on quantum materials


One of the striking aspects of the quantum world is that a particle, say, an electron, is also a wave, meaning that it exists in many places at the same time. Researchers make use of this property to develop a new type of tool -- the quantum twisting microscope (QTM) -- that can create novel quantum materials while simultaneously gazing into the most fundamental quantum nature of their electrons.
Published Neutrons reveal key to extraordinary heat transport


Warming a crystal of the mineral fresnoite, scientists discovered that excitations called phasons carried heat three times farther and faster than phonons, the excitations that usually carry heat through a material.
Published Physicists give the first law of thermodynamics a makeover


Physicists at West Virginia University have made a breakthrough on an age-old limitation of the first law of thermodynamics.
Published Study offers details on using electric fields to tune thermal properties of ferroelectric materials


New research sheds light on how electric fields can be used to alter the thermal properties of ferroelectric materials, allowing engineers to manipulate the flow of heat through the materials. Ferroelectric materials are used in a wide variety of applications, from ultrasound devices to memory storage technologies.
Published Reactive fabrics respond to changes in temperature


New textiles change shape when they heat up, giving designers a wide range of new options. In addition to offering adjustable aesthetics, responsive smart fabrics could also help monitor people’s health, improve thermal insulation, and provide new tools for managing room acoustics and interior design.
Published Solid-state thermal transistor demonstrated


An effective, stable solid-state electrochemical transistor has been developed, heralding a new era in thermal management technology.
Published New quantum sensing technique reveals magnetic connections


A research team demonstrates a new way to use quantum sensors to tease out relationships between microscopic magnetic fields.
Published Engineers discover a new way to control atomic nuclei as 'qubits'


Researchers propose a new approach to making qubits, the basic units in quantum computing, and controlling them to read and write data. The method is based on measuring and controlling the spins of atomic nuclei, using beams of light from two lasers of slightly different colors.
Published Proposed quantum device may succinctly realize emergent particles such as the Fibonacci anyon


Tenacity has taken a roadblock and turned it into a possible route to the development of quantum computing.
Published Add-on device makes home furnaces cleaner, safer and longer-lasting


Natural gas furnaces not only heat your home, they also produce a lot of pollution. Even modern high-efficiency condensing furnaces produce significant amounts of corrosive acidic condensation and unhealthy levels of nitrogen oxides, carbon monoxide, hydrocarbons and methane. These emissions are typically vented into the atmosphere and end up polluting our soil, water and air. Scientists have developed an affordable add-on technology that removes more than 99.9% of acidic gases and other emissions to produce an ultraclean natural gas furnace. This acidic gas reduction, or AGR, technology can also be added to other natural gas-driven equipment such as water heaters, commercial boilers and industrial furnaces.
Published Securing supply chains with quantum computing


New research in quantum computing is moving science closer to being able to overcome supply-chain challenges and restore global security during future periods of unrest.
Published When the light is neither 'on' nor 'off' in the nanoworld


Scientists detect the quantum properties of collective optical-electronic oscillations on the nanoscale. The results could contribute to the development of novel computer chips.
Published Chiral phonons create spin current without needing magnetic materials


Researchers chiral phonons to convert wasted heat into spin information -- without needing magnetic materials. The finding could lead to new classes of less expensive, energy-efficient spintronic devices for use in applications ranging from computational memory to power grids.
Published Researchers detail never-before-seen properties in a family of superconducting Kagome metals


Researchers have used an innovative new strategy combining nuclear magnetic resonance imaging and a quantum modeling theory to describe the microscopic structure of Kagome superconductor RbV3Sb5 at 103 degrees Kelvin, which is equivalent to about 275 degrees below 0 degrees Fahrenheit.
Published Scientists boost quantum signals while reducing noise


Researchers have developed a special type of amplifier that uses a technique known as squeezing to amplify quantum signals by a factor of 100 while reducing the noise that is inherent in quantum systems by an order of magnitude. Their device is the first to demonstrate squeezing over a broad frequency bandwidth of 1.75 gigahertz, nearly two orders of magnitude higher than other architectures.
Published 'Game-changing' findings for sustainable hydrogen production


Hydrogen fuel could be a more viable alternative to traditional fossil fuels, according to University of Surrey researchers who have found that a type of metal-free catalysts could contribute to the development of cost-effective and sustainable hydrogen production technologies.
Published Scientists make major breakthrough in developing practical quantum computers that can solve big challenges of our time


Researchers have demonstrated that quantum bits (qubits) can directly transfer between quantum computer microchips and demonstrated this with record-breaking connection speed and accuracy. This breakthrough resolves a major challenge in building quantum computers large and powerful enough to tackle complex problems that are of critical importance to society.
Published Entangled atoms cross quantum network from one lab to another


Trapped ions have previously only been entangled in one and the same laboratory. Now, teams have entangled two ions over a distance of 230 meters. The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria. The experiment shows that trapped ions are a promising platform for future quantum networks that span cities and eventually continents.