Computer Science: Quantum Computers Physics: Quantum Computing
Published

New quantum computing architecture could be used to connect large-scale devices      (via sciencedaily.com) 

Researchers have demonstrated an architecture that can enable high fidelity and scalable communication between superconducting quantum processors. Their technique can generate and route photons, which carry quantum information, in a user-specified direction. This method could be used to develop a large-scale network of quantum processors that could efficiently communicate with one another.

Chemistry: Thermodynamics
Published

Enabling nanoscale thermoelectrics with a novel organometallic molecular junction      (via sciencedaily.com) 

Multinuclear organometallic junctions might be the key to realizing high-performance thermoelectric devices at the nanoscale. The unique electronic structure of organometallic ruthenium alkynyl complexes allowed the researchers to achieve unprecedented heat-to-electricity conversion performance in molecular junctions, paving the way to molecular-scale temperature sensors and thermal energy harvesters.

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Fossil Fuels
Published

Cheap, sustainable hydrogen through solar power      (via sciencedaily.com) 

A new kind of solar panel has achieved 9% efficiency in converting water into hydrogen and oxygen--mimicking a crucial step in natural photosynthesis. Outdoors, it represents a major leap in the technology, nearly 10 times more efficient than solar water-splitting experiments of its kind.

Chemistry: Thermodynamics Geoscience: Environmental Issues
Published

Scientists develop a cool new method of refrigeration      (via sciencedaily.com) 

Researchers have developed a new kind of heating and cooling method that they have named the ionocaloric refrigeration cycle. They hope the technique will someday help phase out refrigerants that contribute to global warming and provide safe, efficient cooling and heating for homes.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

Researchers show a new way to induce useful defects using invisible material properties      (via sciencedaily.com)     Original source 

Much of modern electronic and computing technology is based on one idea: add chemical impurities, or defects, to semiconductors to change their ability to conduct electricity. These altered materials are then combined in different ways to produce the devices that form the basis for digital computing, transistors, and diodes. Indeed, some quantum information technologies are based on a similar principle: adding defects and specific atoms within materials can produce qubits, the fundamental information storage units of quantum computing.

Chemistry: Thermodynamics Engineering: Graphene
Published

A shield for 2D materials that adds vibrations to reduce vibration problems      (via sciencedaily.com) 

A new study demonstrates a new, counterintuitive way to protect atomically-thin electronics -- adding vibrations, to reduce vibrations. By squeezing a liquid-metal gallium droplet, graphene devices are painted with a protective coating of gallium-oxide that can cover millimeter-wide scales, making it potentially applicable for industrial large-scale fabrication. The new technique improves device performance as well as protecting 2D materials from thermal vibration in neighboring materials.

Chemistry: Thermodynamics Energy: Nuclear
Published

Mitigating corrosion by liquid tin could lead to better cooling in fusion reactors      (via sciencedaily.com) 

Researchers have clarified the chemical compatibility between high temperature liquid metal tin (Sn) and reduced activation ferritic martensitic, a candidate structural material for fusion reactors. This discovery has paved the way for the development of a liquid metal tin divertor, which is an advanced heat-removal component of fusion reactors. A device called a divertor is installed in the fusion reactors to maintain the purity of the plasma. For divertors, there has been demand for liquid metals that can withstand extremely large heat loads from high-temperature plasma.

Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: Quantum Computing
Published

Chaos gives the quantum world a temperature      (via sciencedaily.com) 

Two seemingly different areas of physics are related in subtle ways: Quantum theory and thermodynamics. How can the laws of thermodynamics arise from the laws of quantum physics? This question has now been pursued with computer simulations, which showed that chaos plays a crucial role: Only where chaos prevails do the well-known rules of thermodynamics follow from quantum physics.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

Quantum dots at room temp, using lab-designed protein      (via sciencedaily.com)     Original source 

Quantum dots are normally made in industrial settings with high temperatures and toxic, expensive solvents -- a process that is neither economical nor environmentally friendly. But researchers have now pulled off the process at the bench using water as a solvent, making a stable end-product at room temperature. Their work opens the door to making nanomaterials in a more sustainable way by demonstrating that protein sequences not derived from nature can be used to synthesize functional materials.

Chemistry: Thermodynamics
Published

Gold-based passive heating for eyewear      (via sciencedaily.com) 

Researchers have developed a new transparent gold nanocoating that harnesses sunlight to heat the lenses of glasses, thereby preventing them from fogging in humid conditions. This coating could potentially also be applied to car windshields.

Computer Science: Quantum Computers Mathematics: Modeling Space: Cosmology
Published

Curved spacetime in the lab      (via sciencedaily.com) 

In a laboratory experiment, researchers have succeeded in realizing an effective spacetime that can be manipulated. In their research on ultracold quantum gases, they were able to simulate an entire family of curved universes to investigate different cosmological scenarios and compare them with the predictions of a quantum field theoretical model.

Chemistry: Thermodynamics Energy: Batteries
Published

Flameproofing lithium-ion batteries with salt      (via sciencedaily.com) 

A polymer-based electrolyte makes for batteries that keep working -- and don't catch fire -- when heated to over 140 degrees F.

Computer Science: Quantum Computers
Published

New quantum dots study uncovers implications for biological imaging      (via sciencedaily.com) 

Researchers report the synthesis of semiconductor 'giant' core-shell quantum dots with record-breaking emissive lifetimes. In addition, the lifetimes can be tuned by making a simple alteration to the material's internal structure.

Computer Science: Quantum Computers
Published

New instrument measures supercurrent flow, data has applications in quantum computing      (via sciencedaily.com) 

An extreme-scale nanoscope is beginning to collect data about how pulses of light at trillions of cycles per second can control supercurrents in materials. The instrument could one day help optimize superconducting quantum bits, which are at the heart of quantum computing, a new and developing technology.

Computer Science: Quantum Computers
Published

Changing the color of quantum light on an integrated chip      (via sciencedaily.com) 

Recently, researchers have developed an integrated electro-optic modulator that can efficiently change the frequency and bandwidth of single photons. The device could be used for more advanced quantum computing and quantum networks.

Computer Science: Quantum Computers Physics: Acoustics and Ultrasound
Published

An exotic interplay of electrons      (via sciencedaily.com) 

Water that simply will not freeze, no matter how cold it gets -- a research group has discovered a quantum state that could be described in this way. Experts have managed to cool a special material to near absolute zero temperature. They found that a central property of atoms -- their alignment -- did not 'freeze', as usual, but remained in a 'liquid' state. The new quantum material could serve as a model system to develop novel, highly sensitive quantum sensors.

Computer Science: Quantum Computers Space: Cosmology
Published

Physicists observe wormhole dynamics using a quantum computer      (via sciencedaily.com)     Original source 

Scientists have developed a quantum experiment that allows them to study the dynamics, or behavior, of a special kind of theoretical wormhole.

Computer Science: Artificial Intelligence (AI) Computer Science: Quantum Computers Engineering: Robotics Research
Published

Pulses driven by artificial intelligence tame quantum systems      (via sciencedaily.com)     Original source 

Machine learning drives self-discovery of pulses that stabilize quantum systems in the face of environmental noise.

Chemistry: Thermodynamics
Published

Team recycles previously unrecyclable plastic      (via sciencedaily.com) 

Researchers have discovered a way to chemically recycle PVC into usable material, finding a way to use the phthalates in the plasticizers -- one of PVC's most noxious components -- as the mediator for the chemical reaction.