Chemistry: Thermodynamics
Published

Researchers introduce an energy-efficient method to enhance thermal conductivity of polymer composites      (via sciencedaily.com) 

Thermally conductive polymer composites consist of fillers oriented in certain directions that form pathways for heat flow. However, conventional methods to control the orientation of these fillers are energy-intensive and require surface modifications that can deteriorate the quality and properties of these materials. Now, researchers have developed an energy-efficient method to control the orientation of the fillers without the need for surface modification, resulting in improvement in thermal conductivity.

Computer Science: Quantum Computers Offbeat: Paleontology and Archeology
Published

New quantum computing feat is a modern twist on a 150-year-old thought experiment      (via sciencedaily.com) 

New research demonstrates a 20x improvement in resetting a quantum bit to its '0' state, using a modern version of the 'Maxwell's demon'.

Chemistry: Thermodynamics
Published

Engineers use quantum computing to develop transparent window coating that blocks heat, saves energy      (via sciencedaily.com) 

Scientists have devised a transparent coating for windows that could help cool the room, use no energy and preserve the view.

Chemistry: Thermodynamics Energy: Alternative Fuels
Published

Cooling down solar cells, naturally      (via sciencedaily.com) 

Too much sun and too much heat can reduce the efficiency of photovoltaics. A solar farm with optimally spaced panels facing the correct direction could cool itself through convection using the surrounding wind. Researchers explored how to exploit the geometry of solar farms to enhance natural cooling mechanisms.

Chemistry: Thermodynamics
Published

High-performance and compact vibration energy harvester created for self-charging wearable devices      (via sciencedaily.com) 

A research team has developed a microelectromechanical system (MEMS) piezoelectric vibration energy harvester, which is only about 2 cm in diameter with a U-shaped metal vibration amplification component. The device allows for an increase of approximately 90 times in the power generation performance from impulsive vibration. Since the power generation performance can be improved without increasing the device size, the technology is expected to generate power to drive small wearable devices from non-steady vibrations, such as walking motion.

Computer Science: Quantum Computers Energy: Nuclear
Published

Quantum algorithm of the direct calculation of energy derivatives developed for molecular geometry optimization      (via sciencedaily.com) 

Researchers have successfully extended the quantum phase difference estimation algorithm, a general quantum algorithm for the direct calculations of energy gaps, to enable the direct calculation of energy differences between two different molecular geometries. This allows for the computation, based on the finite difference method, of energy derivatives with respect to nuclear coordinates in a single calculation.

Chemistry: Thermodynamics
Published

Research unearths obscure heat transfer behaviors      (via sciencedaily.com) 

Researchers have found that boron arsenide, which has already been viewed as a highly promising material for heat management and advanced electronics, also has a unique property. After reaching an extremely high pressure that is hundreds of times greater than the pressure found at the bottom of the ocean, boron arsenide's thermal conductivity actually begins to decrease. The results suggest that there might be other materials experiencing the same phenomenon under extreme conditions.

Computer Science: Quantum Computers
Published

The entanglement advantage      (via sciencedaily.com) 

Researchers have demonstrated a way to entangle atoms to create a network of atomic clocks and accelerometers. The method has resulted in greater precision in measuring time and acceleration.

Chemistry: Thermodynamics
Published

A life-inspired system dynamically adjusts to its environment      (via sciencedaily.com) 

The system regulates its own temperature in response to environmental disturbances.

Chemistry: Thermodynamics
Published

A nanoscale view of bubble formation      (via sciencedaily.com) 

A nanoscale view of bubble formation: Using computer simulation, a research team succeeded in modeling the behavior of molecules at the liquid -- gas interface at the nanometer scale, enabling them to describe the boiling process with extreme precision. The findings could be applied to future cooling systems for microprocessors, or to the production of carbon-neutral hydrogen, known as green hydrogen.

Computer Science: Quantum Computers
Published

Achieving a quantum fiber      (via sciencedaily.com) 

Researchers have successfully demonstrated the transport of two-photon quantum states of light through a phase-separated Anderson localization optical fiber.

Computer Science: Quantum Computers
Published

Spin correlation between paired electrons demonstrated      (via sciencedaily.com)     Original source 

Physicists have experimentally demonstrated for the first time that there is a negative correlation between the two spins of an entangled pair of electrons from a superconductor. For their study, the researchers used spin filters made of nanomagnets and quantum dots.

Computer Science: Artificial Intelligence (AI) Computer Science: Quantum Computers
Published

Quantum algorithms save time in the calculation of electron dynamics      (via sciencedaily.com) 

Quantum computers promise significantly shorter computing times for complex problems. But there are still only a few quantum computers worldwide with a limited number of so-called qubits. However, quantum computer algorithms can already run on conventional servers that simulate a quantum computer. A team has succeeded in calculating the electron orbitals and their dynamic development using an example of a small molecule after a laser pulse excitation. In principle, the method is also suitable for investigating larger molecules that cannot be calculated using conventional methods.

Chemistry: Thermodynamics
Published

Great potential for aquifer thermal energy storage systems      (via sciencedaily.com) 

Aquifer thermal energy storage systems can largely contribute to climate-friendly heating and cooling of buildings: Heated water is stored in the underground and pumped up, if needed. Researchers have now found that low-temperature aquifer thermal energy storage is of great potential in Germany. This potential is expected to grow in future due to climate change.

Computer Science: Encryption Computer Science: Quantum Computers Mathematics: Puzzles
Published

Microlaser chip adds new dimensions to quantum communication      (via sciencedaily.com) 

With only two levels of superposition, the qubits used in today's quantum communication technologies have limited storage space and low tolerance for interference. Engineering's hyperdimensional microlaser generates 'qudits,' photons with four simultaneous levels of information. The increase in dimension makes for robust quantum communication technology better suited for real-world applications.

Chemistry: Thermodynamics
Published

How '2D' materials expand      (via sciencedaily.com) 

Researchers developed a technique to effectively measure the thermal expansion coefficient of two-dimensional materials. With this information, engineers could more effectively and efficiently use these atomically-thin materials to develop next-generation electronic devices that can perform better and run faster than those built with conventional materials.

Computer Science: Quantum Computers
Published

Grid of quantum islands could reveal secrets for powerful technologies      (via sciencedaily.com)     Original source 

Researchers have created grids of tiny clumps of atoms known as quantum dots and studied what happens when electrons dive into these archipelagos of atomic islands. Measuring the behavior of electrons in these relatively simple setups promises deep insights into how electrons behave in complex real-world materials and could help researchers engineer devices that make possible powerful quantum computers and other innovative technologies.

Chemistry: Thermodynamics Energy: Nuclear Space: Structures and Features
Published

How does radiation travel through dense plasma?      (via sciencedaily.com) 

Researchers provide experimental data about how radiation travels through dense plasmas. Their data will improve plasma models, which allow scientists to better understand the evolution of stars and may aid in the realization of controlled nuclear fusion as an alternative energy source.

Chemistry: Thermodynamics Space: Exploration
Published

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites      (via sciencedaily.com) 

Carbon fiber-reinforced ultra-high-temperature ceramic (UHTC) matrix composites are extensively used in space shuttles and high-speed vehicles. However, these composites suffer from a lack of oxidation resistance. Recently, researchers tested the heat resistance of these composites at very high temperatures, providing insight into the modifications needed to prevent UHTC degradation. Their findings could have huge implications for the manufacture of space shuttle orbiters.

Chemistry: Thermodynamics
Published

Autonomous crawling soft 'ringbots' can navigate narrow gaps      (via sciencedaily.com) 

Researchers have created a ring-shaped soft robot capable of crawling across surfaces when exposed to elevated temperatures or infrared light. The researchers have demonstrated that these 'ringbots' are capable of pulling a small payload across the surface -- in ambient air or under water, as well as passing through a gap that is narrower than its ring size.